首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Four-week-old chamomile (Matricaria chamomilla) plants were exposed for 72 h to 0.01, 0.1 and 1 mM phenylalanine (Phe) or tyrosine (Tyr). Phe at all concentrations significantly increased phenylalanine ammonia-lyase (PAL) activity (by 30, 76 and 90%, respectively) as well as accumulation of coumarin-related compounds (herniarin and its precursors (Z)- and (E)-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids). Free Phe content increased significantly at the highest dose tested. Lower Tyr concentrations (0.01 and 0.1 mM) significantly increased PAL activity and increased free Tyr content, however free Phe content decreased. This indicated that Tyr-mediated stimulation of PAL is coupled to Phe consumption. Notwithstanding, Tyr had no effect on coumarin accumulation. Therefore we speculate that in chamomile a regulation/signalling mechanism could be operating in the pathway leading to coumarin synthesis. The malondialdehyde accumulation, an usual marker of stress in plants, was not significantly changed by amino acid supplements, suggesting that membrane damage is not the signal causing coumarin accumulation. In parallel experiment we observed that neither lower (0.25 × full strength), nor higher (3 × full strength) nitrogen concentration of nutrient solution compared to normal (1 × full strength, 205 mg N l-1) solution used for Phe/Tyr supply affected herniarin and GMCAs accumulation. This indicates that Phe had stimulatory effect on PAL activity and coumarin metabolism.  相似文献   

2.
Through o-hydroxycinnamic acids, the biosynthesis of coumarins is connected with aromatic amino acid metabolism and nitrogen uptake. Therefore the quantitative changes in levels of some free amino acids and coumarins (herniarin and its glucosidic precursors (Z) - and (E)-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids; umbelliferone) in the leaf rosettes of chamomile (Matricaria chamomilla L.) subjected to nitrogen deficiency were studied. Nitrogen content decreased in the leaf rosettes and in the roots of N-deficient plants during the course of the experiment, but these plants produced significantly higher root biomass. Among secondary metabolites, the sum of 2-β-D-glucopyranosyloxy-4-methoxycinnamic acids increased sharply, herniarin increased slowly and the content of umbelliferone was low in N-deficient plants. We have concluded that nitrogen deficiency is not an inducing factor for stress accumulation of herniarin and umbelliferone. A decrease in levels of all detected amino acids, besides histidine, was found. Within aromatic amino acids, tyrosine was the most abundant. The content of free phenylalanine was significantly lower in both, control and N-deficient plants when compared to the content of tyrosine. In this view, the increase of herniarin glucosidic precursors is apparently due to enhancing phenylalanine ammonia-lyase activity under nitrogen deficiency and nitrogen-free carbon skeletons are shunted in to the phenylpropanoid metabolism, including biosynthesis of (Z)-and (E)-2-β-D-glucopyranosyloxy-4-methoxycinnamic acids.  相似文献   

3.
Ammonium ion accumulation and the decrease in glutamine synthetase (GS)activity induced by CdCl2 were investigated in relation to lipidperoxidation in detached rice leaves. CdCl2 was effective inincreasing ammonium ion content, decreasing GS activity and increasing lipidperoxidation. Free radical scavengers (glutathione, thiourea, sodium benzoate)and an iron chelator (2,2-bipyridine) were able to inhibit the decreasein GS activity and ammonium ion accumulation caused by CdCl2 and atthe same time inhibit CdCl2-induced lipid peroxidation. Paraquat,which is known to produce oxygen radicals, decreased GS activity, increasedammonium ion content, and increased lipid peroxidation. GS1 appears to be thepredominant isoform present. Excess Cd caused a decrease in GS1 but not in GS2in detached rice leaves. An increase in lipid peroxidation preceded ammoniumionaccumulation and the decrease in GS1 activity. These results suggest that thedecrease in GS activity and the accumulation of ammonium ions in detached riceleaves are a consequence of oxidative damage caused by excess Cd.  相似文献   

4.
The influence of various cadmium concentrations on organic acid levels in leaves of the Cd hyperaccumulator, Solanum nigrum L. and a closely related species, Solanum melongena L., were investigated. In particular, the relationship of organic acids with Cd accumulation in the two plants was investigated. The results showed that Cd accumulation in the shoots of S. nigrum was significantly higher than that of S. melongena. The accumulation of Cd in the leaves of S. nigrum ranged from 2.0 to 167.8 μg g−1 dry weight (DW), but only from 1.2 to 64.0 μg g−1 DW in S. melongena. Solanum melongena was considerably less tolerant to Cd than S. nigrum. Approximately 20% of the total Cd in S. nigrum leaves was water-soluble, suggesting that some accumulated Cd was associated with water-soluble compounds such as organic acids. Malic acid in the leaves of S. nigrum was the most abundant organic acid [up to 115.6–145.7 μmol g−1 fresh weight (FW)], but this acid was not significantly affected by the Cd concentration in soil. However, the level of malic acid in S. melongena plants was much lower, only 16.3–75.4 μmol g−1 FW. The significant positive correlations between total Cd and water-soluble Cd concentrations and both acetic and citric acid concentrations in the leaves of S. nigrum were observed. In contrast, there was no correlation between concentrations of the two acids and Cd concentrations in the leaves of S. melongena. These results indicated that acetic and citric acids in the leaves of S. nigrum might be related to its Cd hyperaccumulation.  相似文献   

5.
Aspergillus carbonarius and a strain of Penicillium, a cadmium tolerant fungi, are able to metabolize cadmium chloride up to 2% (w/v). Their amino acids analysis on cadmium free and cadmium chloride containing media indicated certain disorders in their metabolic activities. Cystathionine was only detected in both fungi in the presence of cadmium chloride. However, cadmium was incorporated into several types of low and high molecular weight proteins. The amino acids hydrolyzates of a cadmium containing protein are characterized by the presence of high levels of sulfur amino acids; cysteine and methionine. Ethylasparagine was detected in the hydrolyzate of that cadmium containing protein as well.  相似文献   

6.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   

7.
Gibberellic acid (GA3) is a very potent hormone whose natural occurrence in plants controls their development. Cadmium is a particularly dangerous pollutant due to its high toxicity and great solubility in water. In this study, the effect of GA3 on Allium sativum root tip cells was investigated in the presence of cadmium. A. sativum root tip cells were exposed to CdNO3 (50, 100, 200 μM), GA3 (10-3 M), both CdNO3 and GA3. Cytogenetic analyses were performed as micronucleus (MN) assay and mitotic index (MI). Lipid peroxidation analysis was also performed in A. sativum root tip cells for determination of membrane damage. MN exhibited a dose-dependent increase in Cd treatments in A. sativum. GA3 significantly reduced the effect of Cd on the MN frequency. MN was observed in GA3 and GA3 + 50 μm Cd treatments at very low frequency. MI slightly decreased in GA3 and GA3 + Cd treatments. MI decreased more in high concentrations of Cd than combined GA3 + Cd treatments. The high concentrations of cadmium induce MN, lipid peroxidation and lead to genotoxicity in A. sativum. Current work reveals that the effect of Cd on genotoxicity can be partially restored with GA3 application.  相似文献   

8.
Cadmium toxicity of rice leaves is mediated through lipid peroxidation   总被引:8,自引:0,他引:8  
Oxidative stress, in relation to toxicity of detached rice leaves,caused by excess cadmium was investigated. Cd content inCdCl2-treated detached rice leaves increased with increasingdurationof incubation in the light. Cd toxicity was followed by measuring the decreasein chlorophyll and protein. CdCl2 was effective in inducing toxicityand increasing lipid peroxidation of detached rice leaves under both light anddark conditions. These effects were also observed in rice leaves treated withCdSO4, indicating that the toxicity was indeed attributed to cadmiumions. Superoxide dismutase (SOD), ascorbate peroxidase (APOD), and glutathionereductase (GR) activities were reduced by excess CdCl2 in the light.The changes in catalase and peroxidase activities were observed inCdCl2-treated rice leaves after the occurrence of toxicity in thelight. Free radical scavengers reduced CdCl2-induced toxicity and atthe same time reduced CdCl2-induced lipid peroxidation and restoredCdCl2-decreased activities of SOD, APOD, and GR in the light. Metalchelators (2,2-bipyridine and 1,10-phenanthroline) reducedCdCl2 toxicity in rice leaves in the light. The reduction ofCdCl2 toxicity by 2,2-bipyridine (BP) is closely associatedwith a decrease in lipid peroxidation and an increase in activities ofantioxidative enzymes. Furthermore, BP-reduced toxicity of detached riceleaves,induced by CdCl2, was reversed by adding Fe2+ orCu2+, but not by Mn2+ or Mg2+.Reduction of CdCl2 toxicity by BP is most likely mediated throughchelation of iron. It seems that toxicity induced by CdCl2 mayrequire the participation of iron.  相似文献   

9.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

10.
Cd-tolerant and Cd-sensitive rice cultivars were used to study the role of NH4 + accumulation in Cd-induced toxicity. NH4 + accumulation seems to be involved in regulating the toxicity of rice seedlings caused by CdCl2. This conclusion was based on the observations that (a) on treatment with CdCl2, NH4 + content increased rapidly in the leaves of the Cd-sensitive cultivar (cv. Taichung Native 1, TN1) but not in the Cd-tolerant cultivar (cv. Tainumg 67, TNG67), (b) pretreatment with abscisic acid (ABA) enhanced Cd tolerance and reduced Cd-induced NH4 + accumulation in TN1 seedlings, (c) exogenous application of the ABA biosynthesis inhibitor, fluridone, decreased Cd tolerance and increased NH4 + content in leaves of TNG67, (d) exogenous application of phosphinothricin, an inhibitor of glutamine synthetase (GS), which resulted in NH4 + accumulation in the leaves, also induced toxicity similar to Cd in TN1 seedlings. Evidence is presented to show that Cd-induced NH4 + accumulation in TN1 leaves is attributable to a decrease in GS activity. Since Cd-treated TN1 leaves had higher glutamine and glutamate contents than control leaves, it is unlikely that glutamine (or glutamate) depletion is the mechanism which regulates Cd-induced toxicity.  相似文献   

11.
Summary A primarily genetic approach was employed to obtain plasmids in Rhodococcus erythropolis ATCC 12674 which carried genes conferring increased resistance to sodium arsenate and arsenite, cadmium chloride, and chloramphenicol. The plasmids were large, migrating more slowly than chromosomal DNA in agarose gels, and were made up of resistance determinants from the host organism together with part of the genome of nocardiophage Q4. Purified plasmid was used to transform a suitable recipient to increased resistance to sodium arsenate, sodium arsenite, and cadmium chloride.  相似文献   

12.
In the present study, we evaluated the protective effect of nitric oxide(NO) against senescence of rice leaves enhanced by water deficit. Dehydration(DH), polyethylene glycol (PEG) and sorbitol (ST) treatments were used toinducewater deficit. Senescence of rice leaves was determined by the decrease ofprotein content. NO donors[N-tert-butyl--phenylnitrone (PBN), sodiumnitroprusside (SNP), 3-morpholinosydnonimine (SIN-1), and ascorbic acid +NaNO2] were effective in inhibiting senescence of dehydrated andPEG-treated rice leaves, but had no effect on senescence of ST-treated riceleaves. PEG or DH resulted in a marked increase in malondialdehyde (MDA)contentand decrease in superoxide dismutase (SOD) activity, but ST had no effect onMDAcontent and SOD activity. Treatment with NO donors caused a reduction of PEG-and DH-induced increase in MDA content and decrease in SOD activity. Theprotective effect of NO donors on promotion of senescence, increase in lipidperoxidation and decrease in SOD activity induced by PEG and DH was reversed by2-(4-carboxy-2-phenyl)-4,4,5,5- tetra-methylinmidazoline-1-oxyl-3-oxide, a NOspecific scavenger, suggesting that the protective effect of NO donors isattributed to NO released. The inhibition of PEG- and DH- enhanced senescenceofrice leaves by NO is most likely mediated through increasing SOD activity anddecrease in lipid peroxidation.  相似文献   

13.
Zhang Z  Gao X  Qiu B 《Phytochemistry》2008,69(4):911-918
Phytochelatins (PCs) are known to play an essential role in the heavy metal detoxification of some higher plants and fungi by chelating heavy metals. However, three recent papers reported that no PCs could be detected in the hyperaccumulator Sedum alfredii Hance upon cadmium, lead or zinc treatment, respectively. In this paper, PC synthesis was assayed again in the mine population of S. alfredii with the help of reversed phase high-performance liquid chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry. Our data showed that PC formation could be induced in the leaf, stem and root tissues of S. alfredii upon exposure to 400 microM cadmium, and only in the stem and root when exposed to 700 microM lead. However, no PCs were found in any part of S. alfredii when it was subjected to exposure to 1600 microM zinc.  相似文献   

14.
Photosynthetic performance, contents of chlorophyll and associated pigments, cellular damage and activities of antioxidative enzymes were investigated in two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to cadmium (Cd) stress. Exposure to Cd severely restricted the net photosynthetic rate (P(N)) of RH-30 compared to Varuna. This corresponded to the reductions in the activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in both the cultivars. Decline in chlorophyll (Chl) (a+b) and Chl a content was observed but decrease in Chl b was more conspicuous in Varuna under Cd treatments, which was responsible for higher Chl a:b ratio. Additionally, the relative amount of anthocyanin remained higher in Varuna compared to RH-30 even in the presence of high Cd concentration, while percent pheophytin content increased in RH-30 at low Cd concentration. A higher concentration of Cd (100 mg Cd kg(-1) soil) resulted in elevated hydrogen peroxide (H(2)O(2)) content in both the cultivars. However, Varuna exhibited lower content of H(2)O(2) in comparison to RH-30. This was reflected in the increased cellular damage in RH-30, expressed by greater thiobarbituric acid reactive substances (TBARS) content and electrolyte leakage. The enhanced activities of antioxidative enzymes, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and also lower activity of superoxide dismutase (SOD) in Varuna alleviated Cd stress and protected the photosynthetic activity.  相似文献   

15.
Cadmium toxicity is reduced by nitric oxide in rice leaves   总被引:24,自引:1,他引:24  
We evaluate the protective effect of nitric oxide (NO) against Cadmium (Cd) toxicity in rice leaves. Cd toxicity of rice leaves was determined by the decrease of chlorophyll and protein contents. CdCl2 treatment resulted in (1) increase in Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in reduced form glutathione (GSH) and ascorbic acid (ASC) contents, and (5) increase in the specific activities of antioxidant enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). NO donors [N-tert-butyl-α-phenylnitrone, 3-morpholinosydonimine, sodium nitroprusside (SNP), and ASC + NaNO2] were effective in reducing CdCl2-induced toxicity and CdCl2-increased MDA content. SNP prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and ASC, and increase in the specific activities of antioxidant enzymes. SNP also prevented CdCl2-induced accumulation of NH4 +, decrease in the activity of glutamine synthetase (GS), and increase in the specific activity of phenylalanine ammonia-lyase (PAL). The protective effect of SNP on CdCl2-induced toxicity, CdCl2-increased H2O2, NH4 +, and MDA contents, CdCl2-decreased GSH and ASC, CdCl2-increased specific activities of antioxidant enzymes and PAL, and CdCl2-decreased activity of GS were reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that protective effect by SNP is attributable to NO released. Reduction of CdCl2-induced toxicity by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.  相似文献   

16.
In different parts of both micropropagated and intact(ordinary, soil-grown) chamomile plants and in hairyroot cultures of this species, formaldehyde (HCHO) indimedone adduct form was identified and quantified byan automatic OPLC instrument using authenticformaldemethone as a standard. The amount of HCHObound by the dimedone reagent increases as theconcentration of dimedone is increased, until amaximum is reached. The HCHO detected is thought to bederived from metabolically-labile hydroxymethylgroups, and suggests that some as yet unidentifiedhydroxymethyl-containing molecule in chamomile mayplay an important role in the metabolism of this commonmedicinal plant.  相似文献   

17.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

18.
Iron nutrition affects cadmium accumulation and toxicity in rice plants   总被引:12,自引:0,他引:12  
The effect of iron (Fe) nutrition on cadmium (Cd) toxicity and accumulation in rice plants was studied using a hydroponic system. The inhibitory effect of Cd on plant growth and chlorophyll content (SPAD value) was dependent on Fe level and the genotype. Malondialdehyde (MDA) content in leaves and roots was not much affected by an increased Cd stress at 0.171 mg l−1 Fe, but it showed a rapid increase when the plants were exposed to moderate (1.89 mg l−1) and high (16.8 mg l−1) Fe levels. High Fe nutrition caused a marked reduction in Cd content in both leaves and roots. Fe content in plants was lower at high Cd (5.0 μM) stress than at low Cd (<1.0 μM) stress. Cd stress increased both superoxide dismutase (SOD) and peroxidase (POD) activities at low and moderate Fe levels. However, with high Fe level, it increased the POD activity, but reduced the SOD activity. Our results substantiate the hypothesis that cell membrane-bound iron transporter (carrier) involved in high-affinity iron transport systems can also transport Cd, and both these ions may compete for this common carrier. The study further showed that there were significant correlations between MDA and Fe contents in leaves and roots of rice plants. It is suggested that the occurrence of oxidative stress in plants exposed to Cd stress is mediated by Fe nutrition. The present results also show that Cd stress affects the uptake of Cu and Zn.  相似文献   

19.
Plantago ovata Forsk. (isabgol) is a valuable medicinal plant; its seeds and shell have a significant role in pharmacy as a laxative compound. Increasing soil contamination with cadmium (Cd) is one of the major concerns and is responsible for toxic effects in plants. This investigation was aimed to analyze the role of biofertilizers in alleviation of cadmium stress, given at the rate of 0, 50, and 100 mg kg−1 of soil. The plants of isabgol, were grown in pots with and without application of AM fungi and Azotobacter (alone and combination). Cadmium showed negative effect on growth and biochemical component whereas proline and MDA content increase with increasing cadmium concentration. Addition of bio-fertilizer showed better growth and higher pigment concentration under cadmium stress as compared to the control. The dual inoculation of AM fungi and Azotobacter was found to be the best in reduction of cadmium stress and promotion of growth parameters.  相似文献   

20.
Lee CC  Lin WY  Wan L  Tsai Y  Lin YJ  Tsai CH  Huang CM  Tsai FJ 《Immunogenetics》2007,59(6):433-439
To investigate whether polymorphisms of IL-2 and IL-18 genes are associated with rheumatoid arthritis (RA), polymorphisms of IL-2 and IL-18 genes were detected by polymerase-chain-reaction-based restriction analysis in the patients with RA and normal controls. The results for the IL-18 gene revealed a significant difference between the patients and the normal controls (p = 0.000003), but there was no significant difference for the IL-2 gene (p = 0.876). The IL-18 gene 105A allele was associated with RA in Chinese patients. Individuals possessing the 105A allele had a higher incidence of RA. A lack of association of IL-2 gene polymorphism between RA patients and healthy individuals was noted. The results of this study provide genetic evidence that IL-18-105A/C polymorphism may play an effective role in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号