首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Whole-cell biosensors are finding increasing use for the detection of environmental pollution and toxicity. These biosensors are constructed through the fusion of promoters, responsive to the relevant environmental conditions, to easily monitored reporter genes. Depending on the choice of reporter gene, expression can be monitored by the production of colour, light, fluorescence or electrochemical reactions. Recent advances in this area have included the development of biosensors of compact size that enable the on-line and in situ monitoring of a large number of environmental parameters.  相似文献   

2.
3.
A new and promising technique in microbial ecology and environmental biology is the use of whole-cell bacterial biosensors. This minireview describes the use of such biosensors for detection and quantification of various compounds and other conditions affecting bacterial expression of different genes. Three types of biosensors (nonspecific, stress-induced, and specific biosensors) are described including their use in different environments. We present tables of published biosensors, including gene fusions, host organisms, and environments in which they are used. We here describe the use of different reporter genes in the construction of biosensors and discuss their use as tools for monitoring the bioavailability of pollutants and their potential use in studying microbial ecology in general.  相似文献   

4.
Aeromonas hydrophila P69.1 (A. hydrophila) was used to construct a semi-specific biosensor to estimate biochemical oxygen demand (BOD) in high fat and grease content wastewaters. A. hydrophila cells were grown in fat containing medium to induce necessary enzymes for transport and degradation of fatty substances. Universal biosensor based on non-specific Pseudomonas fluorescens P75 (P. fluorescens) was used to conduct comparison experiments. Biosensors were calibrated using OECD synthetic wastewater and steady-state method, subsequently several experiments with synthetic and industrial wastewaters were conducted. A linear range up to 45 mg l(-1) BOD(7) was gained using A. hydrophila biosensor, in comparison to 40 mg l(-1) BOD(7) obtained using P. fluorescens biosensors. The lower limit of detection was 5 mg l(-1) BOD(7). Service life of A. hydrophila and P. fluorescens biosensors were 110 and 115 days, respectively. The response time of the biosensors depended on the BOD(7) of measuring solution and was up to 20 min when analyzing different wastewaters. Both biosensors underestimated BOD in meat industry wastewater from 43% up to 71%, but more accurate results could be obtained with A. hydrophila biosensor. Semi-specific A. hydrophila biosensor was able to measure proportion of fat found in wastewater sample, while other refractory compounds remained undetectable to both biosensors.  相似文献   

5.
Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.  相似文献   

6.
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, β-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.  相似文献   

7.
8.
The review summarizes the data on new directions in biosensor technologies based on whole bacterial cells. Biosensors for the monitoring of mono(poly)aromatic hydrocarbons and their chlorinated derivatives, which are constructed with genetically modified bacterial cells bearing a reporter gene fusion, are considered. The operating principle of these biosensors is based on the expression of reporter genes (luc, lux, gfp, rfp) under the control of a promoter and a regulator that specifically respond to a detected compound.  相似文献   

9.
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.  相似文献   

10.
利用工程改造过的肠道微生物进行无创、便宜便捷的肠道炎症检测、治疗可有效应用于医药行业。肠道炎症通常伴随着肠道中硫代硫酸盐和连四硫酸盐的增加,双组分系统ThsSR和TtrSR是两套分别检测这两种小分子的生物感受器系统。采用荧光蛋白作为指示剂需要复杂的测试仪器,不适用于家用检测环境,而肉眼可见的色素蛋白和有色小分子作为指示剂将可能扩大ThsSR和TtrSR的应用前景。两套系统分别被转入大肠杆菌EscherichiacoliTop10和益生菌E. coli Nissle 1917中,sfGFP信号表达效果证明了这两套系统可用。考虑实际应用,sfGFP被一系列色素蛋白和显色小分子替换,在E. coli Top10中,一系列色素蛋白和紫色杆菌素前体protoviolaceinic acid的显色效果明显,表明了该系统具有用于实际肠道炎症检测的可行性。结果表明,改进后的ThsSR和TtrSR系统能够针对不同浓度的肠道炎症标记物作出相应程度的反应,具备用于家庭环境人体肠道炎症检测的潜力。  相似文献   

11.

Background  

Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance) by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV) type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor.  相似文献   

12.
13.
This paper reviews the current status of nematodes with stress-inducible transgenes as biosensors responsive to a range of external stressors, e.g., soil or water pollution, microwave radiation or immunological attack. TransgenicCaenorhabditis elegans carrying reporter genes under heat shock promoter control express reporter products only under stressful conditions. Although relatively insensitive to single metal ions, these worms respond to complex mixtures present in metal-contaminated watercourses and to laboratory mixtures containing similar constituents, but not to any of their components singly at comparable concentrations. Responses to metal mixtures are enhanced by a non-ionic surfactant, Pluronic F-127. Metals taken up by food bacteria and insoluble metal carbonates can also evoke stress responses, both in soil and aqueous media. However, high concentrations of added metals are needed to induce clear-cut responses in soil, owing to metal sorption onto clays and organic matter. Transgenic worms are also stressed by exposure to microwave radiation; pulsed signals generate responses that diminish markedly with distance from the source. Finally, stress responses are inducible by anti-epicuticle antisera and complement, suggesting that immune attack can also activite the heat shock system. The development of rapid microplate toxicity assays based on transgenic nematodes is discussed.  相似文献   

14.
[目的]建立基于分子马达技术的简便快速的分子分型方法,对携带和非携带毒力基因的副溶血性弧菌进行快速分类.[方法]以F0F1-ATPase为核心构建分子马达,以副溶血性弧菌毒力基因tdh、trh和种特异性基因tlh、toxR为靶基因设计4个探针.通过生物素-亲和素系统将探针与分子马达连接构建F0F1-ATPase分子马达生物传感器,对10株副溶血性弧菌分离株进行分类,并与PCR-电泳-凝胶成像结果进行比较;同时对生物传感器的检测灵敏度和特异性进行研究.[结果]10株试验菌株中10株tdh阳性,0株trh阳性,而10株菌都携带tlh和toxR,与PCR-电泳-凝胶成像结果一致;分子马达生物传感器的最低检测限为1 pg/反应体系,且能够对副溶血性弧菌特异性识别,PCR-电泳-凝胶成像方法的最低检测限为10 pg/PCR反应体系.[结论]建立了基于分子马达的分子分型方法,能够对副溶血性弧菌的致病性进行快速诊断,检测灵敏度比PCR-电泳-凝胶成像方法高了10倍,而且特异性非常高.该方法简便、快速、省时、省力,适用于地方疾控部门和口岸检疫部门的基层实验室开展副溶血性弧菌监测和流行病学溯源工作.  相似文献   

15.
16.
Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.  相似文献   

17.
Whole cell microbial biosensors offer excellent possibilities for assaying the complex nature of the bioavailable and bioaccessible fraction of pollutants in contaminated soils, which currently cannot be easily addressed. This paper describes the application and evaluation of three microbial biosensor strains designed to detect the bioavailability and biodegradation of PCBs (and end-products) in contaminated soils and sediments. Polychlorinated biphenyls (PCBs) are considered to be one of the most wide spread, hazardous and persistent pollutants. Herein we describe that there was a positive correlation between the PCB levels within the samples and the percentage of biosensor cells that were expressing their reporter gene; gfp. Immobilisation of the biosensors in calcium alginate beads allowed easy and accurate detection of the biosensor strains in contaminated soil and sludge samples. The biosensors also showed that PCB degradation activity was occurring at a much greater level in Pea inoculated planted soil compared to inoculated unplanted soil indicating rhizoremediation (the removal of pollutants by plant root associated microbes) shows considerable promise as a solution for removing organic xenobiotics from the environment.  相似文献   

18.
19.
Fish chromatophores have been shown to be promising biosensors for the detection of hostile agents in the environment. However, state-of-art methods for such applications are still based on extensive use of data/signal processing, in conjunction with need for a skilled human observer to carry out the detection. As a result, conventional methods are complex, costly and cumbersome rendering them useless for field applications requiring low-cost portable solutions capable of fast detection. A new technique is proposed based on the popular scheme of observing the aggregation response in chromatophores for detection of toxicity, and a solution using optical detection and electronic processing is outlined. This scheme has the advantage of being low in cost while providing simple, fast and reliable detection.  相似文献   

20.
The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号