首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.  相似文献   

2.
The monoclonal antibody (mAb) neuronal nuclei (NeuN) labels the nuclei of mature neurons in vivo in vertebrates. NeuN has also been used to define post-mitotic neurons or differentiating neuronal precursors in vitro . In this study, we demonstrate that the NeuN mAb labels the nuclei of astrocytes cultured from fetal and adult human, newborn rat, and embryonic mouse brain tissue. A non-neuronal fibroblast cell line (3T3) also displayed NeuN immunoreactivity. We confirmed that NeuN labels neurons but not astrocytes in sections of P10 rat brain. Western blot analysis of NeuN immunoreactive species revealed a distribution of bands in nucleus-enriched fractions derived from the different cell lines that was similar, but not identical to adult rat brain homogenates. We then examined the hypothesis that the glial fibrillary acidic protein/NeuN-double positive population of cells might correspond to neuronal precursors. Although the NeuN-positive astrocytes were proliferating, no evidence of neurogenesis was detected. Furthermore, expression of additional neuronal precursor markers was not detected. Our results indicate that primary astrocytes derived from mouse, rat, and human brain express NeuN. Our findings are consistent with NeuN being a selective marker of neurons in vivo , but indicate that studies utilizing NeuN-immunoreactivity as a definitive marker of post-mitotic neurons in vitro should be interpreted with caution.  相似文献   

3.
Angiotensin II (Ang II) is a potent vasoactive peptide and displays growth factor-like properties. Different high-affinity Ang II receptor subtypes (AT1A, AT1B and AT2) have been cloned. They are expressed in various brain structures. Additionally, it has been assumed that Mas could interact directly or indirectly with the renin-angiotensin system. The AT1 receptor mediates pressor and mitogenic effects of Ang II, whereas physiological function and signaling mechanisms of the AT2 receptor remain poorly understood. Recent reports have shown that Ang II could mediate apoptosis through AT2 receptors. Since the AT1A, AT2 and Mas knockout mice provide new tools for uncovering potential actions of Ang II, the cell number in different brain structures of male adult wild-type mice and mice deficient for AT1A, AT2 or Mas was evaluated to get more insight into the role of Ang II in central nervous system development. In nearly all investigated brain structures (cortex, hippocampus, amygdala, thalamus), the cell number was significantly higher in AT2-deficient mice in comparison to wild-type mice. To the contrary, in AT1A-deficient mice the cell number was significantly less than in controls in the lateral geniculate and the medial amygdaloid nucleus. However, cell numbers were not changed in Mas-knockout mice compared to their wild-types. These results show the contrary effects of both angiotensin receptors on cell growth and represent the first demonstration of their action on neuronal cell development evidenced in the adult mouse brain.  相似文献   

4.
Our previous studies demonstrated that peripheral overexpression of angiotensin II (ANG II) type 2 receptors (AT(2)R) prevents hypertension-induced cardiac hypertrophy and remodeling without altering high blood pressure. This, coupled with the observations that AT(2)R play a role in the antihypertensive actions of ANG II type 1 receptor (AT(1)R) blockers (ARBs), led us to propose that peripheral overexpression of AT(2)R would improve the antihypertensive action of losartan (Los) in Sprague-Dawley (SD) rats made hypertensive via chronic infusion of ANG II. Here we utilized adenoviral vector-mediated AT(2)R gene transfer to test this hypothesis. A single intracardiac injection of adenoviral vector containing genomic AT(2)R (G-AT(2)R) DNA and enhanced green fluorescent protein (EGFP) gene controlled by cytomegalovirus (CMV) promoters (Ad-G-AT(2)R-EGFP; 5 x 10(9) infectious units) into adult SD rats produced robust AT(2)R overexpression in cardiovascular tissues (kidney, lung, heart, aorta, mesenteric artery, and renal artery) that persisted for 3-5 days postinjection. By 7 days post viral injection, the overexpressed AT(2)R are reduced toward basal values in certain tissues (lung, kidney, and heart) and are undetectable in others (kidney and blood vessels). In two separate protocols, we demonstrated that the hypotensive effect of Los (0.125, 0.5, and 1.0 mg/kg iv) was significantly greater in the AT(2)R-overexpressing animals (-40.7 +/- 4.3, -41.8 +/- 4.8, and -48.1 +/- 2.6 mmHg, respectively) compared with control vector (Ad-CMV-EGFP)-treated rats (-12.4 +/- 2.2, -20.2 +/- 3.4, and -27.3 +/- 3.4 mmHg, respectively). These results provide support for a depressor role of AT(2)R and the proposal that combined AT(2)R agonist and ARB treatment may be an improved therapeutic strategy for controlling hypertension.  相似文献   

5.
Angiotensin II type 1 receptor-modulated signaling pathways in neurons   总被引:3,自引:0,他引:3  
Mammalian brain contains high densities of angiotensin II (Ang II) type 1 (AT1) receptors, localized mainly to specific nuclei within the hypothalamus and brainstem regions. Neuronal AT1 receptors within these areas mediate the stimulatory actions of central Ang II on blood pressure, water and sodium intake, and vasopressin secretion, effects that involve the modulation of brain noradrenergic pathways. This review focuses on the intracellular events that mediate the functional effects of Ang II in neurons, via AT1 receptors. The signaling pathways involved in short-term changes in neuronal activity, membrane ionic currents, norepinephrine (NE) release, and longer-term neuromodulatory actions of Ang II are discussed. It will be apparent from this discussion that the signaling pathways involved in these events are often distinct.  相似文献   

6.
Neurotrophins play important roles in the response of adult neurons to injury. The intracellular signaling mechanisms used by neurotrophins to regulate survival and axon growth in the mature CNS in vivo are not well understood. The goal of this study was to define the role of the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway in the survival and axon regeneration of adult rat retinal ganglion cells (RGCs), a prototypical central neuron population. We used recombinant adeno-associated virus (AAV) to selectively transduce RGCs with genes encoding constitutively active or wild-type mitogen-activated protein kinase kinase 1 (MEK1), the upstream activator of Erk1/2. In combination with anterograde and retrograde tracing techniques, we monitored neuronal survival and axon regeneration in vivo. MEK1 gene delivery led to robust and selective transgene expression in multiple RGC compartments including cell bodies, dendrites, axons and targets in the brain. Furthermore, MEK1 activation induced in vivo phosphorylation of Erk1/2 in RGC bodies and axons. Quantitative analysis of cell survival demonstrated that Erk1/2 activation promoted robust RGC neuroprotection after optic nerve injury. In contrast, stimulation of the Erk1/2 pathway was not sufficient to induce RGC axon growth beyond the lesion site. We conclude that the Erk1/2 pathway plays a key role in the survival of axotomized mammalian RGCs in vivo, and that activation of other signaling components is required for axon regeneration in the growth inhibitory CNS environment.  相似文献   

7.
The angiotensin II type 2 receptor (AT2R) can influence a variety of intracellular signaling molecules and cellular functions. However, its physiological functions and the roles of introns in the regulation of its expression have not been well determined. We first demonstrated that both intron 1 and intron 2 of AT2R could significantly enhance AT2R overexpression. Thus, we have provided some new prerequisites for further studies on the mechanisms that control AT2R gene expression. Next, we established a highly efficient method of delivering this receptor in vitro and in vivo using an AT2R recombinant adenoviral vector containing two introns of the AT2R. The vector may be useful in helping to uncover AT2R physiological functions and also for gene therapy related to AT2R. Moreover, we determined the important role of introns in gene expression cassettes and the inconsistency of expression between the targeted gene and the reporter gene.  相似文献   

8.
9.
This study was undertaken to investigate the developmental expression of osteopontin (OPN) in the rat brainstem and cerebellum by Northern blotting and in situ hybridization. The expression of OPN was noted in the mesencephalic Vth nucleus initially at embryonic day 16 (E16). At E20, the labeling extended into other brainstem nuclei including the cochlear, vestibular, facial motor, and hypoglossal nuclei. During the first week of postnatal life, the OPN signal in the brainstem increased markedly, and by P14, OPN expression was found in functionally diverse areas including motor-related areas, sensory relay nuclei, and the reticular formation. The adult labeling pattern was established in central neurons at this time. These results corresponded well with those from Northern blot analysis. On the basis of morphological and distribution criteria, the OPN signal in several nuclei appeared to be contained exclusively within neuronal soma. OPN expression in neurons occurred during the period of neuronal differentiation and increased with maturation. Our results therefore suggest that OPN contributes to developmental processes, including the differentiation and maturation of specific neuronal populations, in the rat brain.  相似文献   

10.
11.
Relaxin is a peptide hormone with known actions associated with female reproductive physiology, but it has also been identified in the brain. Only one relaxin gene had been characterized in rodents until recently when a novel human relaxin gene, human gene-3 (H3) and its mouse equivalent (M3) were identified. The current study reports the identification of a rat homologue, rat gene-3 (R3) relaxin that is highly expressed in a discrete region of the adult brain. The full R3 relaxin cDNA was generated using RT-PCR and 3' and 5' RACE protocols. The derived amino acid sequence of R3 relaxin retains all the characteristic features of a relaxin peptide and has a high degree of homology with H3 and M3 relaxin. The distribution of R3 relaxin mRNA in adult rat brain was determined and highly abundant expression was only detected in neurons of the ventromedial dorsal tegmental nucleus (vmDTg) in the pons, whereas all other brain areas were unlabelled or contained much lower mRNA levels. Relaxin binding sites and relaxin immunoreactivity were also detected in the vmDTg. These together with earlier findings provide strong evidence for a role(s) for multiple relaxin peptides as neurotransmitters and/or modulators in the rat CNS.  相似文献   

12.
Reelin is an extracellular protein that controls many aspects of pre- and postnatal brain development and function. The molecular mechanisms that mediate postnatal activities of Reelin are not well understood. Here, we first set out to express and purify the full length Reelin protein and a biologically active central fragment. Second, we investigated in detail the signal transduction mechanisms elicited by these purified Reelin proteins in cortical neurons. Unexpectedly, we discovered that the full-length Reelin moiety, but not the central fragment, is capable of activating Erk1/2 signaling, leading to increased p90RSK phosphorylation and the induction of immediate-early gene expression. Remarkably, Erk1/2 activation is not mediated by the canonical signal transduction pathway, involving ApoER2/VLDLR and Dab1, that mediates other functions of Reelin in early brain development. The activation of Erk1/2 signaling likely contributes to the modulation of neuronal maturation and synaptic plasticity by Reelin in the postnatal and adult brain.  相似文献   

13.
14.
Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effects produced by altered synthesis of transmitters in neurons. However, it has not been studied in NTS. Therefore, we sought to determine whether FIV transfects rat NTS cells and to define the type of cell transfected. We found that injection of FIV encoding LacZ gene (FIVLacZ) into the NTS led to transfection of numerous NTS cells. Injection of FIVLacZ did not alter immunoreactivity (IR) for neuronal nitric oxide synthase, which we have shown resides in NTS neurons. A majority (91.7 ± 3.9%) of transfected cells contained IR for neuronal nuclear antigen, a neuronal marker; 2.1 ± 3.8% of transfected cells contained IR for glial fibrillary acidic protein, a glial marker. No transfected neurons or fibers were observed in the nodose ganglion, which sends afferents to the NTS. We conclude that FIV almost exclusively transfects neurons in the rat NTS from which it is not retrogradely transported. The cell-type specificity of FIV in the NTS may provide a molecular method to study local physiological functions mediated by potential neurotransmitters in the NTS.  相似文献   

15.
Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1–2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.  相似文献   

16.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

17.
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.  相似文献   

18.
19.
The serotonergic (5-HT) neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA) mouse line (TPH2-tTA) that allows temporal and spatial control of tetracycline (Ptet) controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb) by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ). In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox). Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20) were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We generated a transgenic mouse tTA line (TPH2-tTA) which allows both inducible and reversible transgene expression and inducible Cre-mediated gene deletion selectively in 5-HT neurons throughout life. This will allow precise delineation of serotonergic gene functions during development and adulthood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号