首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活动依赖的突触结构可塑性是学习和记忆的基础.哺乳动物,尤其是啮齿类动物,具有高度发达的嗅觉系统和惊人的气味学习和记忆能力.本研究以CNGA2敲除而导致外周输入缺失的小鼠为模型,研究嗅球内活动依赖的突触结构可塑性.利用特异性的突触前和突触后标记物,发现外周输入缺失减少了突触标记蛋白突触素(synaptophysin)和抑制性突触标记蛋白桥蛋白(gephyrin)在嗅球外网状层和颗粒细胞层中的表达;兴奋性突触标记蛋白囊泡谷氨酸转运蛋白1(VGluT1)的表达水平只在外网状层中有显著下降,而在颗粒细胞层中没有明显变化.进一步通过活体质粒电转标记嗅球颗粒细胞后发现,CNGA2敲除小鼠颗粒细胞上位于外网状层中的远端树突棘密度显著减小,而位于颗粒细胞层中的近端树突棘密度没有明显变化.这些结果表明颗粒细胞上的树-树突触具有对外周活动依赖的结构可塑性,而轴-树突触则无.  相似文献   

2.
树突棘是中枢神经系统中绝大多数兴奋性突触的突触后位点。在出生后早期,脑内树突棘大量形成;当个体进入青少年期,脑内树突棘总数逐渐减少,这一过程被称为树突棘修剪,并被认为是神经环路精确化的重要过程。在孤独症谱系障碍、精神分裂症等发育性神经系统疾病中被报道存在树突棘修剪的异常。虽然树突棘修剪的现象已被广泛描述,然而介导该过程的分子机制尚待进一步研究。该研究组近期工作发现,在小鼠触须所对应的感觉皮层,树突棘的修剪与成熟是协同发生的,并且受感觉经验的双向调控。进一步研究发现,神经电活动可以引起相邻树突棘对cadherin/catenin细胞黏附复合物的竞争,导致该复合物的重新分布,并使这两个树突棘的命运产生分化:得到cadherin/catenin复合物的树突棘变得更加成熟而相邻失去这些分子的树突棘变小或被修剪。这一cadherin/catenin复合物依赖的竞争机制为树突棘的协同成熟与修剪提供了特异性,对于理解介导神经环路精确化的机制至关重要。  相似文献   

3.
树突棘是神经元树突上的功能性突起结构,通常作为突触后成份与投射来的轴突共同构成完整的突触连接。树突棘的形态与结构具有明显的可塑性,其变化通常会引起突触功能的改变。Eph受体酪氨酸激酶家族分子与其配体ephrin都是重要的神经导向因子,同时对树突棘结构也有直接的调控作用。Eph受体的活化可以促进树突棘的发生并影响树突棘的形态及内部结构;而Eph受体的异常也往往会损害正常的突触功能,甚至导致许多与树突棘结构异常相关的神经系统病变的发生。  相似文献   

4.
树突棘和突触的病理改变在认知功能障碍发病机制中具有十分重要的作用,研究表明大脑发育调节蛋白(developmentregulationbrainprotein,Drebrin)能够调节树突棘和突触的形态和重塑。Drebrin的减少可能通过树突棘内细胞骨架变化,使树突棘的形态结构受到影响,导致突触功能和结构的变化。但目前阿尔茨海默病(Alzheimer’Sdisease,AD)脑内突触病理变化的具体机制及Drebrin和突触之间的关系仍不明确。探讨Drebrin与认知功能的关系及其机制,对临床上早期干预认知功能障碍、寻找AD的有效诊断治疗措施具有重要意义。  相似文献   

5.
叶玉如 《生命科学》2008,20(5):709-711
突触可塑性对于脑发育过程中的神经环路重构以及学习记忆等脑的高级功能是非常重要的。许多受体酪氨酸激酶家族成员,包括TrkB、ErbB和Eph在神经连接的建立和重构过程中起到核心作用。比如,突触后EphB依赖的信号会导致树突棘的产生和神经递质受体的聚集,而ephrinA引起的EphA4激活可以导致树突棘的回缩。但是,目前对EphA4依赖的树突棘重组和对神经递质受体的调节背后的机制还知之甚少。本文将集中探讨EphA4及其下游的信号通路在神经肌肉接头和中枢神经的突触中,对神经递质受体的调节功能。  相似文献   

6.
<正>"二型富亮氨酸重复激酶"(leucine-rich repeat kinase 2,LRRK2)由帕金森基因家族PARK8基因编码,富含于脑纹状体神经元。最近,NIH研究人员发现了LRRK2参与帕金森症的分子机制。敲除LRRK2分子会导致"纹状体投射神经元"(striatal projection neurons,SPNs)蛋白激酶A(PKA)活性降低、细胞骨架蛋白actin的调节子"Cofilin"过磷酸化、"树突棘"密度降低、突触发育迟滞,呈现帕金森症病理学特征。Parisiadou等人发现:敲除Lrrk2基因会导致SPNs树突棘数量剧减、丝状幼稚树突棘显著多于蘑菇状成熟树突棘、PSD95  相似文献   

7.
诸多神经精神性疾病的发生均伴有树突棘发育异常。免疫球蛋白超家族成员细胞间黏附分子5(intercellular adhesion molecule 5,ICAM5)是一个通过抑制树突棘成熟,将其维持在丝状形态的跨膜蛋白,它只表达于端脑兴奋性神经元,可能与树突棘发育、突触可塑性乃至学习记忆密切相关。现综述了ICAM5的发现和特征、分子结构、基因结构、在树突棘发育过程中的作用,以及与脆性X综合征等疾病的关系,试图为阐明发育阶段脑神经元异常树突棘形成的机制提供线索。  相似文献   

8.
脆性X综合征为最常见的遗传性智力低下性疾病之一,是由于FMR1基因异常导致其编码的脆性X智力低下蛋白减少或缺失所致.研究发现脆性X综合征尸解病人和FMR1基因敲除小鼠(KO鼠)神经元树突棘发育不成熟,模型小鼠海马区代谢性谷氨酸受体所触发的长时程抑制(LTD)延长,不成熟的树突棘导致突触功能障碍被认为是脑功能异常的基础.最近的研究表明,应用代谢性谷氨酸受体拮抗剂能改善由FMRP缺失所导致的突触和行为缺陷,表明mGluR功能过度激活可能参与了脆性X综合征的发病过程,但具体机制不明.FMRP是一种mRNA结合蛋白,可作为翻译抑制因子负性调节突触后膜mRNA的翻译和表达.因此推测FMRP缺乏和减少可能导致mGluR激发的mRNA翻译增多,参与神经系统发育的蛋白过度表达,而影响树突棘的发育,但具体机制仍不清楚.本文对mGluR和脆性X综合征的研究历史和最新进展进行了讨论.  相似文献   

9.
目的 观察树突棘素在大鼠小脑中的表达及年龄相关性变化。方法 应用免疫组织化学和Western blot方法,显示树突棘素在不同年龄组的大鼠小脑中的表达,并用图像分析系统对阳性免疫反应结果进行定量分析。结果 在中年组大鼠小脑中,树突棘素呈高表达,而在老年组和青年组大鼠小脑组织中表达水平相对较低。在小脑树突棘素的表达以分子层为主,其次表达在颗粒层细胞周围,少量树突棘素在大鼠小脑的蒲肯野细胞也有表达。结论 树突棘素的表达随着年龄的改变而变化;这种变化可能与不同年龄段大鼠小脑组织中突触的可塑性变化有关。  相似文献   

10.
本文报道饲养于海拔3300米地区室内(室温5-20℃)非冬眠的幼年、成年与老年喜马拉雅旱獭大脑的某些生理参数、血液气体分析、大脑皮质神经元数量与锥体细胞树突棘棘器的数量变化以及大脑皮质超微结构特点。结果表明:成年组与幼年组相比,脑重占体重百分比有所下降,血红蛋白浓度、红细胞压积和氧利用率有所升高,锥体细胞数量增加9.7%(P>0.05),锥体细胞树突棘的棘器数目增加22.4%(P<0.05);老年组与成年组相比,脑重占体重百分比进一步下降,血红蛋白浓度、红细胞压积进一步升高,氧利用率明显下降(P<0.01),锥体细胞数减少29.8%(P<0.01),锥体细胞树突棘的棘器数目减少33.8%(P<0.01),锥体细胞浆中的粗面内质网、游离核糖体及突触前膜中的突触小泡数量也明显减少,脂褐素含量升高。  相似文献   

11.
在中枢神经系统内神经细胞的树突棘是突触信息传递的重要部位,树突棘的体积和密度影响神经环路的功能。2007年美国加利福尼亚大学的SilaK.Ultanir等人在皮层NRl亚基(是NMDA受体的必要组分)基因敲除的小鼠上发现NMDA受体对树突棘的发育有重要影响。急性分离出生后三周内小鼠的脑片,用电压钳全细胞记录的方法,发现在皮层2/3层的锥体细胞中,AMPA受体介导的微小兴奋性突触后电流(mEP-SC)的幅度和频率均明显增大。  相似文献   

12.
树突棘是兴奋性突触的主要突触后结构基础,其数量与形态受神经电活动调控,并在整个生命过程中呈现复杂且有序的动态变化。树突棘的动态变化在神经环路的形成和精确化修剪中扮演重要的角色,该过程的异常可导致孤独症谱系障碍、精神分裂症等神经系统疾病。主要综述了近年来关于树突棘形态与数量动态变化的研究工作,包括发育早期的树突棘发生和青春期的树突棘修剪。在此基础上,还简要阐述了介导树突棘动态变化的信号分子,讨论了其与神经系统疾病的关联,并提出了该领域尚未解决的一些问题。  相似文献   

13.
人类的大脑约由一千亿个神经元组成,它们通过位于树突棘结构上的突触相互连接,形成庞大的神经网络,主宰着人们的感觉、运动、记忆与情感。这个神经网络并不是一成不变的。发育早期,神经元之间的连接迅速建立;而在个体经由青少年期向成年期转变的过程中,多余的连接经由树突棘的修剪得到清除,神经环路得到优化,从而达到最佳的信息传递与储存效果。树突棘修剪对于大脑的正常功能至关重要,在多种发育性神经系统疾病中均发现了树突棘修剪的异常,但介导该过程的分子机制是基本未知的。中国科学院神经科学研究所于翔研究组的工作发现,发育过程中小鼠感觉皮层的树突棘修剪和被保留树突棘的成熟同时受到感觉经验的双向调控,并协同变化。通过在单个树突棘的水平精细操控细胞黏附水平和神经电活动水平,于翔实验室进一步发现这种协同的成熟/修剪变化是由相邻树突棘间对一类细胞黏附分子——cadherin/catenin复合物——的竞争所介导:竞争到更多此类复合物的树突棘变得稳定、成熟,而失败的一方则被修剪。这一"赢家通吃"的竞争模型为发育过程中神经网络的优化提供了分子机制的解释,拓展了人们对于大脑可塑性的理解,并可能代表了生物系统发育的普遍策略。鉴于树突棘修剪的异常与孤独症、精神分裂症等发育性神经系统疾病密切相关,阐明其分子机制对解析上述疾病的致病机理有重要的理论与临床意义。  相似文献   

14.
沈华智 《生命科学》2008,20(5):676-679
常规RNA干涉或基因敲除的功能缺失手段仅仅只是简单地移除某个基因或蛋白,而这个过程常常会掩盖磷酸化对某个特定蛋白的调节。在树突发育和突触功能活性依赖的调节过程中,突触后致密蛋白磷酸化的机制仍然是未知的领域。突触后Rap GTP酶激活蛋白SPAR与PSD95结合,可以促进树突棘的生长并加强突触。Plk2(polo-like kinase2,也称为Snk)是一种受突触活性诱导表达的蛋白激酶,它可以磷酸化SPAR,磷酸化的SPAR通过泛素化.蛋白酶体途径降解,从而导致树突棘和突触的减少。Plk2的诱导表达和随后SPAR的降解是长时间神经活性增强过程中突触强度的稳态抑制(突触剥落)所必需的。有趣的是,SPAR需要被另外一种激酶cDK5磷酸化后才能被Plk2所降解。这种机制通过CDK5对一部分突触进行标记,为由Plk2-SPAR通路抑制或去除这些突触提供了可能的途径,但其分子机制在神经退行性疾病突触丢失中的作用仍需进一步探讨。  相似文献   

15.
正突触间的连接受到多种蛋白质的活性与功能的协调配合,细胞周期依赖性蛋白激酶5(Cyclin-dependent kinase 5,Cdk5)的激活在突触形成过程中发挥重要作用,Cdk5的过度激活可通过减少树突棘数量及下调神经元表面受体NMDA的表达导致突触形成障碍。最近,来自香港理工大学的研究团队发现NO可对Cdk5特异性激活子p35进行亚硝基化修饰,进而介导蛋白酶体降解途径下调p35表达,降低Cdk5活性。研究人员发现,在神经元型一氧化氮合酶(nNOS)敲除小鼠中,海马神经元密度及成熟性均显著下降,神经元表面受体  相似文献   

16.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

17.
树突棘是神经元之间产生直接联系的部位,其形态可塑性是记忆的结构基础。谷氨酸信息传递是中枢神经信息传递的主要方式,能产生突触传递效率的可塑性,由此引起树突棘形态的可塑性变化。本文从谷氨酸受体途径的角度对树突棘形态可塑性的调控机制做一综述。谷氨酸受体主要通过其下游信号分子调节棘内肌动蛋白动力学蛋白,参与树突棘的形态发生和稳定。该作用在局部受到不同的蛋白、信号分子、激素、mi RNAs的调节,从而参与生理及病理过程。最后,提出展望,研究脑区特异的局部微环境变化对记忆相关疾病病因及治疗探讨有参考价值。  相似文献   

18.
目的探讨新生大鼠缺氧缺血脑白质损伤后脑内神经元的变化。方法新生3日龄SD大鼠24只,随机分为对照组和缺氧缺血脑白质损伤(WMI)组。于缺氧缺血后4周,应用免疫荧光染色检测大鼠脑内髓鞘碱性蛋白(MBP)、皮层和海马神经核抗原(Neu N)、微管相关蛋白-2(MAP-2)和突触素(Syn)的表达,应用高尔基染色法观察神经元树突变化,并应用Western blot法进一步测定Syn表达量的变化。结果免疫荧光染色结果显示:与对照组相比,WMI组MBP表达减少,皮层和海马Neu N阳性细胞数未见明显改变,MAP-2阳性细胞突起弯曲、断续;高尔基染色结果显示:WMI组树突棘数量减少;免疫荧光染色和Western blot结果显示:WMI组Syn表达量降低。结论新生大鼠发生缺氧缺血脑白质损伤后树突损伤、树突棘数量减少、突触减少导致神经元之间联系减少,可能引起学习记忆能力减退。  相似文献   

19.
王宁  罗非 《生理科学进展》2005,36(4):313-313
目前流行的溶血栓剂有效治疗的时间窗口是中风后3~6小时。尽管这种治疗可以改善预后,但人们仍不能确定在这个关键时期,体内突触的精细结构究竟发生了怎样的变化。已知成年动物在正常情况下树突棘结构是相对稳定的,那么在中风的情况下,树突棘的结构能否依然保持稳定呢?为此,Zhan  相似文献   

20.
地磁场是地球上生命活动环境的基本要素之一,而外太空中磁场强度接近于零,以往研究显示,地磁场消除(即亚磁场)对生物体结构和功能有多方面的负面影响,但对其作用机制了解仍然很少,本文使用厌恶性条件化学习任务,研究亚磁环境孵化对日龄雏鸡长时记忆的影响,分析雏鸡中枢记忆相关核团IMM和MSt中树突棘密度的变化,探讨亚磁场生物效应的神经基础,实验结果显示,在自然地磁环境中孵化的雏鸡,训练后4h保持显著的厌恶性条件化记忆,其后记忆随时间逐渐消退;而在亚磁环境中孵化的雏鸡,训练后4h已不具有对厌恶性刺激的记忆,对于正常雏鸡,厌恶性刺激导致两侧脑IMM和MSt中树突棘密度均显著升高,在保持记忆的样本中,树突棘密度升高幅度更大,并呈现左侧优势,对于亚磁雏鸡,树突棘密度升高幅度仅与不具有长时记忆的地磁雏鸡大致相当或略低,由此可见,中枢记忆相关核团中树突棘大幅增生是长时记忆的必要前提,地磁场消除可能抑制由厌恶性刺激引发的树突棘增生,从而造成雏鸡记忆功能受损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号