首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多聚免疫球蛋白受体(pIgR)在粘膜免疫中的重要功能   总被引:1,自引:0,他引:1  
多聚免疫球蛋白受体(pIgR)属于Ⅰ型跨膜糖蛋白,可与多聚免疫球蛋白A和多聚免疫球蛋白M特异性结合,通过穿胞转运,将它们从上皮细胞基底侧膜转运到顶膜,并最终分泌到外分泌液中去. 在此过程中,多聚免疫球蛋白受体的细胞外段被水解,释放出与多聚免疫球蛋白A或多聚免疫球蛋白M相结合的细胞外段(又称为分泌成分). 分泌成分是sIgA分子的重要组成部分,直接参与sIgA的粘膜防御功能,而且在被动粘膜免疫中也有重要作用. 多聚免疫球蛋白受体通过介导细胞内多聚免疫球蛋白的转运,可以在粘膜的腔面阻止病原体粘附,在上皮细胞内中和病毒,也可以将固有层内的抗原分泌出去. 因此,多聚免疫球蛋白受体的有效分泌是多聚免疫球蛋白发挥粘膜防御功能的必要条件. 但在某些情况下,该受体也可以介导微生物对上皮屏障的入侵. 多聚免疫球蛋白受体是高度 N -糖基化的,其分子中独特的糖链结构,可能与受体的穿胞转运、sIgA在粘膜的正确定位,以及抗原对上皮细胞的粘附有关. 多聚免疫球蛋白受体和分泌成分参与的多重分子机制,使它们在粘膜免疫中起着举足轻重的作用.  相似文献   

2.
Wu P  Wang MX  Luan HY 《生理科学进展》2011,42(4):296-298
Cl-通道参与许多生理过程,包括跨上皮细胞的离子吸收与分泌、平滑肌与骨骼肌收缩、神经元兴奋性、器官感知功能及细胞容积调节等.目前对于许多类型Cl-通道的分子构型尚不清楚.新近三个独立的研究小组同时发现Ano1是一种与钙离子激活氯通道(calcium-activated chloridechannels,CaCCs)活性密切相关的膜蛋白.Ano1与其它9个成员共同组成Anoctamin家族.所有Anoctamin蛋白都具有类似结构,推测含8个跨膜结构域以及胞质N-末端和C-末端.Ano1和Ano2的表达都与CaCCs类似,但其它Anoctamin蛋白的作用仍然未知.  相似文献   

3.
应用激光共聚焦显微镜和全细胞膜片钳技术研究了微丝骨架解聚剂细胞松弛素B(CB)和稳定剂鬼笔环肽(PD)对梨花粉管细胞内钙离子浓度动态变化和尖端质膜上钙离子通道的影响。结果显示:CB处理能促进花粉管内胞质钙离子[Ca2+]i浓度增加,同时还能激活质膜上的钙离子通道;而PD处理对花粉管内[Ca2+]i浓度及钙离子通道几乎没有影响。研究表明,微丝骨架的解聚激活了花粉管质膜上的钙离子通道,使得胞外钙离子大量流入,胞内钙离子浓度升高,从而抑制花粉管生长。  相似文献   

4.
钙通道与钙释放通道   总被引:3,自引:0,他引:3  
1.Ca~(2+)的重要生理作用胞内游离钙浓度([Ca~(2+)])的变化调节着细胞的代谢、基因表达等细胞共有的活动,以及始动兴奋、收缩或出胞分泌以及激活和失活离子通道等细胞不同的反应。[Ca~(2+)]的升高主要依赖于胞外钙经质膜上的钙通道内流或/和胞内储存钙的释放。释放的内钙也是藉细胞器膜的钙释放通道进入胞浆。可见通道启闭活动的正常是维持[Ca~(2+)]正常的一个重要保证。2.离子通道及其分类离子通道是贯穿于质膜或细胞器膜的大分子蛋白质,其中央形成能通过离子的亲水性孔道(pores)。离子的跨膜转运是通过膜上通道蛋白的功能来完  相似文献   

5.
采用环腺苷酸 (cAMP)放射免疫测定法和活细胞内Ca2 荧光探针Indo 1,研究绵羊垂体腺苷酸环化酶激活多肽 (oPACAP)对原代培养的鲤鱼脑垂体细胞内cAMP和游离Ca2 ([Ca2 ]i)的影响 ,以期探讨PACAP调节脑垂体生长激素 (GH)分泌的机制受体后。oPACAP 38和oPACAP 2 7以剂量依存方式促进脑垂体细胞内cAMP释放和合成。oPACAP 38和oPACAP 2 7也能升高脑垂体细胞内 [Ca2 ]i 水平 ,该作用会因用EGTA消竭细胞外Ca2 ([Ca2 ]e)而迅速消失 ;L型电位敏感性Ca2 通道 (VSCC)阻断剂硝苯吡啶可抑制oPACAP 38诱导的 [Ca2 ]i 水平的升高 ,而当用硝苯吡啶预处理脑垂体细胞 ,oPACAP 38诱导 [Ca2 ]i 水平升高作用完全被抑制。可见 ,PACAP刺激鲤鱼脑垂体GH分泌机制包括依赖于cAMP和依赖于通过L型VSCC内流的 [Ca2 ]e 的机制。  相似文献   

6.
氯离子在上皮物质转运过程中发挥重要作用。目前Cl-跨紧密吸收上皮转运的研究资料表明,Cl-跨上皮吸收主要经细胞通路进行。至少由两个步骤组成。一是经上皮细胞顶膜的电导性Cl-通道进入细胞内;二是经上皮细胞基侧膜的协同转运系统或高电导Cl-通道排出细胞外...  相似文献   

7.
钙激活氯离子通道(Ca CCs)是一种广泛存在的氯离子通道,参与众多生理功能,如:上皮细胞的离子分泌、嗅觉传导以及平滑肌收缩等。由于通常情况下很难将Ca CCs介导的电流和钙离子依赖性阳离子流以及非钙离子依赖性氯离子流分开,因此其钙离子依赖性机制的研究远远滞后于其他离子通道。本文综述了最新报道的Ca CCs分子基础跨膜蛋白TMEM16A的发现和确立、结构特点、钙离子结合位点、其电流发生机制,及其相关生理作用以及病理和药理功能的热点问题,并展望该领域的研究发展趋势。  相似文献   

8.
成纤维细胞生长因子23(FGF23)是一种骨源性激素,它作用于其主要靶器官-肾脏,参与调节磷、钙和钠的重吸收以及活性维生素D(1,25(OH)2D)的合成。在近端肾小管,FGF23通过激活胞外信号调节激酶-1/2(ERK1/2)和血清/糖皮质激素调节激酶-1(SGK1)级联信号传导,使Na+/H+交换调节辅因子(NHERF)-1磷酸化,随后导致钠磷协同转运蛋白(Na Pi)-2a内在化和降解,从而抑制磷重吸收;FGF23通过下调1α-羟化酶表达,同时上调24-羟化酶表达,从而抑制1,25(OH)2D合成。在远端肾小管,FGF23通过激活赖氨酸缺陷型蛋白激酶-4(WNK4),上调上皮钙离子通道TRPV5(瞬时性受体阳离子电位通道亚家族V成员5)和Na+:Cl-协同转运蛋白(NCC)的顶膜表达,从而促进钙和钠的重吸收。临床中发现,由于遗传性和获得性原因导致的血FGF23浓度异常与慢性肾脏病(CKD)及其并发症密切相关。  相似文献   

9.
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2Cl(乌贼轴突中是2Na:1 K:3Cl),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCC1和NKCC2。NKCC1存在于多个组织中,含有NKCC1的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密班的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCC1亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

10.
周亚亚  贺福初  姜颖 《生物磁学》2011,(15):2996-3000
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2C1(乌贼轴突中是2Na:1K:3C1),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCCl和NKCC2。NKCCl存在于多个组织中,合有NKCCl的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密斑的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCCl亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

11.
本文综述了脱落酸作为根源信号物质经由木质部被传递到叶片,经重新分配再与脱落酸受体结合,然后刺激气孔开放因子,调节烟酰胺腺嘌呤二核苷酸磷酸氧化酶等关键酶活性产生过氧化氢,过氧化氢可使胞质碱化并刺激钙离子通道使钙离子内流,活化阴离子通道使阴离子外流,最终导致气孔关闭的一系列过程。该过程涉及到的因子包括:脱落酸受体、气孔开放因子、磷脂酰环己六醇、分裂原激活蛋白激酶、烟酰胺腺嘌呤二核苷酸磷酸氧化酶、Ca^(2+)、pH、一氧化氮等。  相似文献   

12.
利用膜片钳及内皮细胞流动小室方法对大鼠脑微血管内皮细胞在剪切力作用下内皮细胞膜K 通道的开放进行了初步研究 ,结果提示脑微血管内皮细胞膜上存在剪切力敏感的K 通道 ,剪切力作用后 ,内皮细胞膜上K 电流明显增大 ,此电流有明显的短暂延迟现象 ,也可以被胞外施加的TEA抑制 ,符合IKv特征。流动剪切力可以通过影响内皮细胞膜上的K 通道的开放引起穿细胞的离子通透性的增加 ,进而引起细胞内Ca2 的变化。在K 、Ca2 等离子浓度改变的诱导下可以促使G -Actin装配为F -Actin。同时诱导内皮细胞内钙库调节机制的激活 ,这些变化都可以进一步引起细胞信号转导机制的激活。该工作为进一步开展剪切力对微血管内皮细胞信号转导机制的影响提供了实验数据。  相似文献   

13.
短杆菌肽A-DMPC通道内离子输运的分子动力学模拟   总被引:2,自引:0,他引:2  
用最近提出的构建膜体系初始构象的有效方法 ,构建了在DMPC脂膜环境下短杆菌肽A通道模型 (GA -DMPC)。通过对Na 、Ca2 、Cl-三种不同离子在GA -DMPC通道内不同位置的分子动力学模拟 ,研究离子在通道内输运过程中与通道及通道内水分子的相互作用 ,从分子动力学的角度阐明离子在通道内的输运机制。主要计算结果表明 :(1)离子在通道内的输运使GA的构象发生变化 ,GA的柔性是离子在通道内通透的重要因素 ;(2)Cl- 离子可扩大通道半径 ,Na 离子和Ca2 离子则减小通道半径。Cl-离子不能在GA通道内通透 ;(3)离子的出现使通道内水分子的偶极方向发生变化。上述结果均与实验相符。  相似文献   

14.
钙离子(Ca2+)是重要的第二信使,通过与效应蛋白的结合和解离,以及在不同细胞器之间的穿梭运动而精确调控细胞活动,参与多种重要生命过程。细胞内具有精确调节Ca2+时空分布的调控系统。在静息状态下,细胞内的游离Ca2+浓度约为100 nmol/L;而当细胞受到信号刺激后,胞内的Ca2+浓度可上升至1000 nmol/L甚至更高。细胞中存在多种跨膜运送Ca2+的膜蛋白,以精确调节Ca2+浓度的时空动态变化,其中,细胞质膜上的多种Ca2+通道(包括电压门控通道、受体门控通道、储存控制通道等),以及内质网/肌质网和线粒体等胞内"钙库"膜上的雷诺丁受体、三磷酸肌醇受体等膜蛋白复合物,均可提升胞内Ca2+浓度,而细胞质膜上的钠钙交换体、质膜Ca2+-ATP酶、"钙库"膜上的内质网Ca2+-ATP酶、线粒体Ca2+单向转运体等,可将Ca2+浓度降低至静息态水平。质膜钙ATP酶是向细胞外运送Ca2+的关键膜蛋白,本文将对其结构、功能及其酶活性的调控机制做一简要综述。  相似文献   

15.
T淋巴细胞上的离子通道   总被引:4,自引:0,他引:4  
Xiao L  Fu HY  Song DM  Fan SG 《生理科学进展》2003,34(2):105-110
近年的研究证明,淋巴细胞上的离子通道,在免疫功能调节中具有重要的作用。T淋巴细胞上主要有三类离子通道,即Ca2 、K 和C1-通道。Ca2 通过T淋巴细胞膜上的Ca2 通道(CRAC)进入细胞内,可作为第二信使激活T淋巴细胞。通过K 通道的K 外流是T淋巴细胞膜电位形成的基础。由于膜电位水平可以影响钙离子的内流,因此,K 通道可以间接调节T淋巴细胞的活化和功能。T淋巴细胞上的Cl-通道是新近发现的一种离子通道,可能与细胞的体积调节有关。本文扼要总结了T淋巴细胞上离子通道的新近进展。  相似文献   

16.
水通道蛋白AQP1,3,4,5在双峰驼肺中的表达   总被引:1,自引:0,他引:1  
目的研究水通道蛋白AQPs在双峰驼肺中的表达情况,探讨双峰驼适应极干旱荒漠环境的呼吸生理机制。方法运用常规形态学统计方法和石蜡切片HE染色法对双峰驼肺组织形态结构进行统计与分析,免疫组化方法对双峰驼肺中AQPs的表达进行定位分析。结果双峰驼气管长且弯曲,肺较致密且含水量较黄牛高。免疫组化检测显示,在双峰驼肺中有AQP1、AQP3、AQP4和AQP5四种AQPs表达。其中,AQP1主要表达于肺毛细血管网、淋巴管以及气管上皮细胞顶膜面;AQP3主要表达于气管上皮基底细胞质膜上;AQP4主要分布于整个气管上皮杯状细胞基底侧细胞膜和肺泡Ⅱ型上皮细胞;AQP5表达于气管粘膜下腺腺体细胞管腔面和肺泡Ⅰ型上皮细胞膜上。结论呼吸道和肺组织形态学特征表明双峰驼对干旱沙漠环境具有很好的适应性,AQPs在双峰驼肺中的强烈表达,与气道润化、气道水平衡、气道表面液体层、肺内液体转运和肺内水平衡等生理过程有关,为其适应极干旱荒漠环境提供了分子生物学依据。  相似文献   

17.
实验以大鼠胰腺β细胞为研究对象,采用荧光测钙和全细胞膜片钳膜电容测量技术,研究 ATP 对胞内钙离子信号和细胞分泌的影响,并初步探讨了其作用机制 . 实验表明:胞外 ATP 刺激通过动员细胞内 thapsigargin 敏感的钙库 Ca2+ 释放,使大鼠胰腺β细胞内的游离钙离子浓度显著升高,细胞外的 ATP 信号对β细胞胰岛素分泌有双向调节作用,其一,主要通过降低去极化引起的钙电流而对β细胞胰岛素分泌产生较弱的抑制作用,其二,细胞在静息状态下, ATP 通过动员胞内钙库的 Ca2+ 释放使胞浆中的钙离子浓度显著增加,触发β细胞强烈分泌胰岛素 . ATP 的这种双向调节可能对胰岛素分泌的精确调控具有重要的生理意义 .  相似文献   

18.
肾素-血管紧张素系统(renin-angiotensin system, RAS)是影响血管平滑肌细胞张力的重要因素。RAS主要活性物质血管紧张素Ⅱ (angiotensin Ⅱ, Ang Ⅱ)可通过激活血管紧张素Ⅱ-1型受体(angiotensin Ⅱ type 1 receptor, AT1R)升高胞内Ca~(2+)浓度,收缩平滑肌细胞。大电导钙激活钾(large-conductance Ca~(2+)-and voltage-activated potassium, BK)通道是血管平滑肌细胞中分布最广、表达最多的钾离子通道,在维持细胞膜电位和胞内钾钙平衡中发挥重要作用。血管平滑肌细胞上的BK通道主要包含α与β1两种亚基。其中功能亚基BKα上分布有膜电位及Ca~(2+)感受器。因此当膜电位或细胞内Ca~(2+)浓度升高时会反馈性引起BK通道开放。然而,越来越多的研究显示,尽管Ang Ⅱ可升高胞内Ca~(2+)浓度,但却通过激活PKC通路、促进AT1R与BKα通道形成的异源二聚体内吞、加快α与β1亚基解离等途径抑制BK通道的表达和功能。在一些情况下,Ang Ⅱ对BK通道也可表现出激活作用,但机制尚不完全明确。该综述总结了Ang Ⅱ对BK通道抑制或激活两方面效应的可能原因,为改善细胞内离子失衡提供理论依据。  相似文献   

19.
利用质膜钙离子通道抑制剂LaCl3、异搏定(Verapamil,VP),钙离子载体A23187,内膜系统钙离子通道抑制剂2-APB和LiCl处理,研究水杨酸(SA)诱发的丹参培养细胞内Ca2+迸发在培养基碱化过程中的作用。结果显示:SA处理诱发丹参培养细胞培养基碱化,质膜钙离子通道抑制剂LaCl3和VP、内膜系统钙离子通道抑制剂2-APB和LiCl单独处理均可显著抑制SA处理诱发的培养基碱化过程,但质膜钙离子通道抑制剂对SA处理诱发的培养基碱化的抑制作用要显著强于内膜系统钙离子通道抑制剂;当两类钙离子通道抑制剂同时使用,培养基碱化过程被完全抑制,甚至培养基出现酸化趋势;钙离子载体A23187可以显著促进培养基碱化过程。以上结果说明,由水杨酸诱发的胞外Ca2+内流与胞内钙库Ca2+释放均参与了丹参培养基碱化的诱导过程,但胞外Ca2+内流的作用更重要。本研究揭示了SA诱发的Ca2+与丹参细胞培养基碱化之间的关系,为更深层次地阐明植物次生代谢调控机制提供理论基础。  相似文献   

20.
用钙离子荧光探针fluo-3/AM标记囊胚细胞内钙离子,用激光共聚焦扫描显微镜连续检测17β-雌二醇(17β-E2)作用所致囊胚胞内钙离子浓度的动态变化,用荧光显微镜检测偶联牛血清白蛋白的17β-雌二醇(E2-BSA)所致囊胚胞内钙离子浓度的改变,以及在去钙镁M2液、传统雌激素受体阻断剂tamoxifen和磷脂酶C特异抑制剂U73122作用下17β-E2所致囊胚细胞内钙离子浓度的改变。结果显示:17β-E2和E2-BSA均可引起静止状态囊胚细胞内[Ca2 ]的快速升高;17β-E2诱导的囊胚细胞内[Ca2 ]的快速升高不依赖于胞外钙离子的内流,且不被传统雌激素受体阻断剂所阻断,而磷脂酶C特异性抑制剂可明显抑制该效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号