首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 乙酰胆碱作为一种高度保守的神经递质,在动物的运动行为调控中起着至关重要的作用。乙酰胆碱信号转导异常可导致多种运动功能障碍。然而,乙酰胆碱在运动行为中的抑制性调控机制尚未完全清楚。本文以秀丽隐杆线虫为研究对象,探究乙酰胆碱门控氯离子通道受体亚基(ACC-1、ACC-2、ACC-3、ACC-4)在运动行为中的调控作用。方法 通过将运动追踪、分子遗传学和光遗传学技术相结合,对乙酰胆碱门控氯离子通道受体亚基突变线虫的运动进行分析。结果 研究发现,这些亚基突变会影响线虫前进、后退和转向运动的运动学特征,并且前进过程中线虫身体弯曲幅度也发生了变化。在这些突变线虫的后退过程中光激活RIB中间神经元会导致后退运动延迟终止。结论 这些结果提示,乙酰胆碱门控氯离子通道亚基的调控作用对于维持和调节秀丽隐杆线虫运动状态是必需的。同时,这些亚基可能参与介导RIB中间神经元在秀丽隐杆线虫后退运动中的抑制性调控。本研究为理解乙酰胆碱门控抑制性受体在运动行为中的调控机制提供了新的思路。  相似文献   

2.
提高玉米的氮素吸收效率具有重要的意义。鉴于CLC蛋白家族具有运输NO-3的特性,本研究通过同源克隆的方法,克隆了玉米CLC家族基因Zm CLCa。该基因所编码的蛋白含有一个电压门控的氯离子通道(chloride channel)结构域,亚细胞定位结果显示该蛋白位于细胞膜上。在200 mmol/L的KNO3处理条件下,拟南芥转基因过表达株系中NO-3的含量明显高于野生型对照。因此,Zm CLCa基因很可能在玉米的氮素吸收利用过程中具有重要作用。  相似文献   

3.
电压门控钠通道是细胞电兴奋的重要分子基础,由一个α孔道亚基和单个或多个β辅助亚基构成。β亚基以直接与钠通道α亚基结合或以细胞粘附分子方式,组合或单独调节α亚基的表达定位及门控特性。因此,β亚基与α亚基不同亚型的细胞特异性表达组合,是神经元内在特性的内源性调控机制之一。本文基于钠通道β亚基不同亚型差异表达与功能的多样性调控,解析疼痛、癫痫等通道病发生发展的β亚基相关机制,以期为靶向电压门控钠通道的临床诊疗和新药发现提供新策略。  相似文献   

4.
Qi C  Zhang WW  Li XN  Zhou C 《生理学报》2011,63(2):131-137
白介素1β(interleukin-1β,IL-1β)是重要的促炎细胞因子,在中枢神经系统的生理学和病理学过程中发挥关键作用.电压门控钠通道是可兴奋细胞电学活动的基础,控制神经元的兴奋性和动作电位.最近的研究又显示了IL-1β与电压门控通道之间的相互作用.为考察中枢神经元中IL-1β与电压门控钠通道之间的相互作用,本研...  相似文献   

5.
张力  刘超  周昕  谢英  刘树锋 《四川动物》2015,(3):338-344
目的以Tol2为骨架载体,以绿色荧光蛋白(GFP)、Cherry为报告基因,探讨采用2A肽双基因载体构建策略构建单启动子双基因共表达质粒的方法;将B细胞刺激因子(BAFF)分别置于2A序列前后位置,分析位置效应对跨膜融合蛋白的表达与剪切的影响,探讨多基因共表达转基因斑马鱼构建技术。方法以In Fusion法将GFP-2A-Cherry序列构建到Tol2质粒上,所得p Tol-GFP-2A-Cherry质粒转染He La细胞、显微注射1-细胞期斑马鱼受精卵;倒置荧光显微镜观察He La细胞、斑马鱼幼鱼体内GFP与Cherry蛋白的表达,Western blot法验证GFP和Cherry蛋白的表达量与剪切情况;分别构建p Tol2-GFP-2A-BAFF与p Tol2-BAFF-2A-Cherry质粒,Western blot法检查BAFF的表达与剪切情况。结果 p Tol2-GFP-2A-Cherry质粒转染的He La细胞,GFP与Cherry均可单独表达且表达呈现时空一致性;GFP-2A-Cherry融合蛋白可被剪切为GFP与Cherry,且成等比例表达趋势。p Tol2-GFP-2A-Cherry质粒显微注射1-细胞期斑马鱼受精卵可获得可单独表达GFP与Cherry蛋白的转基因斑马鱼;p Tol2-GFP-2A-BAFF与p Tol2-BAFF-2A-Cherry于斑马鱼体内均有融合蛋白的表达,且BAFF序列位于2A序列后更易于融合蛋白的剪切。结论通过2A肽策略构建可实现在斑马鱼体内单一载体、单一启动子调控双基因表达目的。发现编码跨膜分泌蛋白的功能基因位于2A序列的不同位置会直接影响蛋白的剪切,功能基因位于2A序列后易于跨膜蛋白的剪切。  相似文献   

6.
HIV-1衣壳蛋白在转基因枸杞中表达的免疫组织化学定位   总被引:3,自引:0,他引:3  
目的:研究转基因植物中重组蛋白的细胞定位,有助于进一步了解转基因枸杞中HIV-1衣壳(CA)蛋白融合蛋白的分泌表达途径。方法:利用含有MA4-CA融合基因的农杆菌转化枸杞,转化植株获得再生。采用免疫组织化学方法对转基因枸杞表达的CA融合蛋白进行初步定位。结果:免疫组织化学定位表明,在转基因枸杞愈伤组织中,HIV-1CA主要在细胞浆、细胞壁和细胞间隙中表达。结论:免疫组织化学结果初步证明了CA融合蛋白在转基因枸杞中的表达分布。  相似文献   

7.
目的:建立植物microRNA(miRNA)功能的瞬时活体验证体系,并检验该体系的有效性。方法:选用双元表达载体pCAMBIA1200,并插入烟草花叶病毒双35S启动子,以驱动目标miRNA超表达;选用双元表达载体pFGC5941的绿色荧光蛋白(GFP)改造载体用于潜在的靶基因与GFP融合蛋白的超表达,以转入这2种载体的农杆菌侵染烟草叶片,观察GFP融合蛋白的荧光,作为验证miRNA对其潜在靶基因调控作用的瞬时验证体系。选取拟南芥已知功能的miR393及其靶基因AFB3,分别构建pCAMBIA1200-35S-miR393和pFGC5941-GFP-AFB3载体,利用农杆菌注射烟草叶片进行2个载体共转化,并以pFGC5941-GFP-AFB3单转化作为对照,激光共聚焦显微镜下观察融合蛋白的表达。结果:只将AFB3导入烟草表皮细胞,可观察到绿色荧光;而将miR393与AFB3同时导入烟草表皮细胞后,未能观察到绿色荧光。表明miR393抑制了AFB3的表达。结论:本瞬时表达体系可作为植物miRNA功能的活体瞬时验证体系,为miRNA调控靶基因表达功能提供简单、快速、有效的证据。  相似文献   

8.
Zhang XD  Zang YM  Zhou SS  Zang WJ  Yu XJ  Wang YM 《生理学报》2002,54(3):196-200
为探讨C1C-1通道的门控机制,实验应用爪蟾母细胞异源性表达大鼠野生型C1C-1(WT RC1C-1)通道基因,并使用双电极电压钳法记录通道电流。通过改变细胞外氯离子浓度,采用双指数拟合的方法分析通道去激活电流,对其去激活门控动力学特性进行了研究。结果表明,降低细胞外氯离子浓度可增加快速去激活电流成分,减少慢速去激活成分;同时,慢速去激活和快速去激活电流的时间常数都显著减小,说明细胞外氯离子浓度的改变可影响通道去激活动力学参数,从而改变通道的门控过程。  相似文献   

9.
目的:探索Mpl与绿色荧光蛋白GFP基因共同转粢哺乳动物细胞NIH3T3的方法.方法:采用PCR方法将GFP基因与Mpl基因构建融合荧光蛋白的真核表达载体,用脂质体介导转染NIH3T3细胞和筛选稳定细胞系,使用荧光显微镜方法和Westernblotting检测转染效果.结果:利用PCR方法有效扩增了Mpl基因,构建了融合荧光蛋白的真核表达载体,序列分析表明所构建的含Mpl基因的质粒与设计相同,使用荧光显微镜方法和Western blotting检测Mpl融合绿色荧光蛋白表达载体成功转染NIH3T3细胞.结论:成功构建了Mpl荧光表达载体,融合基因可以在NIH3T3细胞中稳定表达,为进一步研究Mpl的生物学活性及其与hNUDC蛋白相互作用提供了重要的理论依据.  相似文献   

10.
目的探索tet-on四环素诱导表达系统在斑马鱼体内应用策略与技术路线,构建四环素诱导肝脏特异表达绿色荧光蛋白的转基因斑马鱼,为条件型功能基因研究及组织特异转基因斑马鱼疾病模型的建立奠定基础。方法构建肝脏特异启动子fabp10启动rt TA蛋白表达的重组质粒pfabp10-rt TA,联合p TRE-Tight-BI-Ac GFP1质粒转染He La细胞后给予doxycycline诱导,Western blot法验证;pfabp10-rt TA联合p TRE-Tight-BI-Ac GFP1质粒注射斑马鱼1-细胞期受精卵后,30μg/m L doxycycline诱导,荧光筛选稳定整合个体。结果共转染pfabp10-rt TA与p TRE-Tight-BI-Ac GFP1的He La细胞经1μg/m L浓度doxycycline诱导培养液诱导,GFP表达量显著高于不加doxycycline培养液对照组;筛选获得的稳定整合斑马鱼幼鱼,在浓度为30μg/m L doxycycline条件下,肝脏明显有绿色荧光表达,对照组幼鱼肝脏位置未有明显绿色荧光。结论 Tet-On四环素诱导表达系统可用于建立四环素调控斑马鱼肝脏特异表达外源基因;利用该技术可建立诱导肝脏表达GFP建立转基因斑马鱼品系,为建立条件型转基因斑马鱼疾病模型、探索肝脏器官发生发育等研究提供良好的模式动物工具。  相似文献   

11.
利用超声波辅助花粉介导基因转化法,将小麦耐低磷调控基因TaPHR1和GFP构建成的融合蛋白基因(TaPHR1∷GFP)导入3个玉米自交系郑58、昌7-2和PH6WC中.结果表明:3个自交系的转化效果存在基因型差异,郑58是很好的转化受体材料,平均结籽穗率、每穗平均结籽数、BASTA除草剂抗性和转基因植株PCR阳性率均优于昌7-2和PH6W;对T1代植株进行Southern杂交表明,TaPHR1∷GFP融合蛋白基因已整合到玉米基因组中;RT-PCR结果显示,TaPHR1∷GFP融合蛋白基因得到有效转录;通过对发芽籽粒进行GFP荧光观察表明,TaPHR1∷GFP融合蛋白基因得到了表达.  相似文献   

12.
目的:获取人组氨酸磷酸酶蛋白PHPT1基因,并构建其C端GFP融合的真核表达载体,通过瞬时转染观察融合蛋白在细胞内的表达和定位,并研究其定位与细胞层状伪足形成的关系。方法:以人宫颈癌细胞株HeLa cDNA为模板,PCR扩增PHPT1的全长编码基因,克隆到pEGFPN2载体中,构建pEGFP-N2-PHPT1真核表达载体,利用脂质体将构建的载体转染到HeLa细胞中,用激光共聚焦扫描显微镜观察C端GFP连接的PHPT1的细胞定位,并进一步探讨其定位与细胞层状伪足形成的关系。结果:成功构建了PHPT1的GFP融合表达载体pEGFP-N2-PHPT1,并在He La细胞中检测到了融合蛋白的表达,发现其定位与细胞层状伪足的形成密切相关,并可直接影响细胞的运动能力。结论:GFP融合形式表达的PHPT1蛋白在细胞质和细胞核中均有表达,并且定位于细胞层状伪足的前沿,影响细胞层状伪足的形成,从而影响细胞运动。  相似文献   

13.
【目的】水通道蛋白(aquaporin,AQP)是一种广泛存在于细胞生物膜系统中的跨膜转运蛋白,它在水分渗透压平衡过程中发挥着重要的作用。本研究旨在前期克隆茶尺蠖Ectropis obliqua Prout水通道蛋白AQP1(EoAQP1)基因全长的基础上,进一步明确该蛋白的细胞器定位,并探析其对细胞形态和增殖的影响。【方法】采用双酶切法构建了绿色荧光蛋白(green fluorescent protein,GFP)载体以及绿色荧光蛋白与EoAQP1的真核融合(EoAQP1-GFP)表达载体。通过荧光显微镜和激光共聚焦显微镜观测了GFP与EoAQP1-GFP蛋白在黑腹果蝇Drosophila melanogaster胚胎细胞系(S2)中的表达特征。利用溶酶体和高尔基体红色荧光探针明确了EoAQP1蛋白在S2细胞内的细胞器定位。通过流式细胞仪和酶标仪检测了EoAQP1蛋白对S2细胞系细胞的颗粒度、大小和增殖的影响。【结果】成功构建了GFP和EoAQP1-GFP的真核表达载体,将其分别命名为pAc5.1-GFP和pAc5.1-EoAQP1-GFP。荧光显微镜和激光共聚焦显微镜观测结果表明,荧光蛋白GFP均匀填充于S2细胞内稳定表达。融合蛋白EoAQP1-GFP存在两种表达形式:一种以类似于溶酶体的球形和橄球形结构,围绕细胞核在细胞质中散点表达;另一种以类似于高尔基体的半球状和弓形结构表达于细胞质中。溶酶体和高尔基体红色荧光探针检测结果表明,EoAQP1蛋白在溶酶体内没有表达,但与高尔基体完全重叠。流式细胞仪和酶标仪检测结果表明,过表达EoAQP1蛋白可使S2细胞膨胀增大,细胞颗粒度增强,但对细胞增殖无明显影响。【结论】EoAQP1定位于高尔基体中行使功能,该蛋白能改变细胞形态,但不能促进细胞的生长。  相似文献   

14.
电压门控性K 通道是由4个相同亚单位构成的四聚体通道,其中每个亚单位都含有1个电压感受器,并且4个亚单位合起来组成1个中央孔.电压门控性通道蛋白具有3种主要功能,一是离子通透功能,二是门控蛋白构象改变,三是门控与感知机制的偶联.通道具有高通透速率和高选择性,通过构象改变的门控机制有3种,一是S6束交叉门控,二是球链门控,三是选择性滤器的门控.  相似文献   

15.
目的:脂滴快速融合是增大脂滴直径的方式之一,但其研究相对少。本研究旨在建立脂滴快速融合的细胞模型,以便对其进行深入的生物学研究。方法:本研究使用大鼠肾成纤维细胞系NRK和小鼠前脂肪细胞系3T3-L1两种细胞系,先用油酸诱导细胞内产生大量脂滴,再使用饥饿缓冲液培养细胞,利用显微镜实时观测技术跟踪脂滴动态变化,建立脂滴快速融合的模型。而后在此模型中,加入自噬抑制剂或者以过表达CCT为阳性对照,过表达PAT蛋白(PLIN1、ADRP和TIP47),来探究它们在调控脂滴快速融合方面的功能。结果:饥饿缓冲液处理约3小时可诱导细胞发生脂滴快速融合,其融合速率很快,从脂滴接触到融合完成可发生在20秒内,显然不同于CIDE蛋白调控的缓慢脂滴融合过程。自噬抑制剂可以抑制自噬,但是并没有显著影响脂滴快速融合,说明饥饿诱导的脂滴快速融合不依赖于自噬。另发现,与过表达GFP相比,过表达定位于脂滴的GFP-CCT、GFP-PLIN1、GFP-ADRP或GFP-TIP47均能显著性抑制快速融合导致的脂滴变大的现象。结论:本研究建立了饥饿缓冲液诱导脂滴发生快速融合的细胞模型,并证明PAT蛋白(PLIN1、ADRP、TIP47)能抑制脂滴快速融合。  相似文献   

16.
CIC通道的生物学及相关疾病   总被引:2,自引:0,他引:2  
CIC(voltage-gated chloride channel)通道是迄今发现的唯一电压门控氯离子通道,在细胞兴奋性调节,细胞容积调节和跨上皮物质转运等生理过程的调节中发挥重要作用,本文讨论了目前已经发现的CIC通道的分类,分布,结构和功能,以及与其有关的致病机制。  相似文献   

17.
目的构建人19号染色体长臂Nephrin基因和绿色荧光蛋白(green fluorescence protein,GFP)真核表达质粒,为进一步研究肾小球裂隙隔膜分子复合物构成与功能提供基础。方法设计引物,扩增真核表达质粒pEGFPN3中的GFP基因片段,将其插入nephrin原核表达载体pcDNA3.1 nephrin V5-His,重组质粒经酶切鉴定后测序,并转染至COS-7细胞观察表达情况及生物学特性。结果成功构建pcDNA3.Inephrin—GFP重组质粒,并将Nephtin—GFP融合蛋白成功表达于COS-7细胞,进一步经交联实验证明Nephtin—GFP融合蛋白具有正确的细胞膜表达。结论利用pEGFPN3和pcDNA3.1nephtinV5-His可成功重组Nephrin—GFP表达质粒,为进一步研究肾小球裂隙隔膜分子复合物构成及其功能提供有利工具。  相似文献   

18.
通过RT-PCR法由斑马鱼脾脏克隆B细胞刺激因子baff基因,构建过表达斑马鱼baff且携带有绿色荧光标记蛋白的重组质粒pIRES2-GFP-baff;胚胎显微注射获得转基因斑马鱼胚胎;通过GFP荧光标记跟踪并筛选转基因阳性鱼;Western blot法鉴定Baff-GFP融合蛋白表达情况;qPCR检测baff,GFP及baff下游相关基因bcl-2,il-4mR-NA表达情况。结果表明细胞、胚胎及幼鱼baff和GFP均高表达,baff下游基因bcl-2激活和il-4基因抑制表达。通过胚胎显微注射法可成功获得过表达baff的转基因斑马鱼,此研究为建立红斑狼疮转基因斑马鱼模型及高通量筛选Baff拮抗剂奠定了基础。  相似文献   

19.
不同蛋白标签对LMO2融合蛋白沉淀实验的影响   总被引:1,自引:0,他引:1  
融合蛋白沉淀技术是一种用来研究蛋白质相互作用的新的体外实验技术, 通常利用蛋白亲和标签与探针蛋白融合表达来钓取未知相互作用蛋白或验证已知蛋白间的相互作用, 其中以谷胱甘肽巯基转移酶(GST)标签最为常用。LMO2(由LIM only缩写得名, 也称Ttg-2或Rbtn2)是一种小分子量难溶蛋白。利用原核系统分别表达了含有GST和麦芽糖结合蛋白(MBP)两种标签的LMO2融合蛋白, 发现GST-LMO2融合蛋白以包涵体的形式表达, 而MBP-LMO2融合蛋白则能够以可溶形式表达, 而且MBP-LMO2的表达量明显高于GST-LMO2融合蛋白。将可溶性的MBP-LMO2融合蛋白和复性后的GST-LMO2融合蛋白分别用于钓取K562细胞中LMO2的结合蛋白, 结果显示二者都可以结合K562细胞中内源性的GATA1蛋白, 而MBP-LMO2融合蛋白捕获的GATA1蛋白明显多于复性后的GST-LMO2融合蛋白。这一结果提示, 在研究一些分子量小、疏水性强的蛋白质时改变标签蛋白可能是一种有益的尝试。  相似文献   

20.
融合蛋白沉淀技术是一种用来研究蛋白质相互作用的新的体外实验技术, 通常利用蛋白亲和标签与探针蛋白融合表达来钓取未知相互作用蛋白或验证已知蛋白间的相互作用, 其中以谷胱甘肽巯基转移酶(GST)标签最为常用。LMO2(由LIM only缩写得名, 也称Ttg-2或Rbtn2)是一种小分子量难溶蛋白。利用原核系统分别表达了含有GST和麦芽糖结合蛋白(MBP)两种标签的LMO2融合蛋白, 发现GST-LMO2融合蛋白以包涵体的形式表达, 而MBP-LMO2融合蛋白则能够以可溶形式表达, 而且MBP-LMO2的表达量明显高于GST-LMO2融合蛋白。将可溶性的MBP-LMO2融合蛋白和复性后的GST-LMO2融合蛋白分别用于钓取K562细胞中LMO2的结合蛋白, 结果显示二者都可以结合K562细胞中内源性的GATA1蛋白, 而MBP-LMO2融合蛋白捕获的GATA1蛋白明显多于复性后的GST-LMO2融合蛋白。这一结果提示, 在研究一些分子量小、疏水性强的蛋白质时改变标签蛋白可能是一种有益的尝试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号