首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
谷氨酸脱羧酶(glutamate decarboxylase,GAD)是一种磷酸吡哆醛(pyridoxal-5′-phosphate,PLP)依赖性酶,广泛存在于自然界的动植物和微生物中,在酸性环境下发生结构变化,不可逆地催化L-谷氨酸或谷氨酸盐α-脱羧生成γ-氨基丁酸(γ-aminobutyric acid,GABA)。γ-氨基丁酸在人体中作为一种抑制性神经递质,具有重要的生理功能,可以被广泛应用于食品和制药工业中。本文就谷氨酸脱羧酶结构及催化机制的研究进展进行概述。  相似文献   

2.
谷氨酸脱羧酶研究进展   总被引:2,自引:0,他引:2  
谷氨酸脱羧酶(glutamic acid decarboxylase,GAD,EC4.1.1.15)在生物体内广泛存在,其催化产物γ-氨基丁酸(γ-aminobutyric acid,GABA)是哺乳动物体内一种重要的抑制性神经递质。在对自身免疫性疾病以及糖尿病研究中,特别是1型糖尿病,GAD、GABA以及谷氨酸脱羧酶抗体(glutamic acid decarboxylase-antibody,GAD-Ab)等的水平作为病理分析、疾病诊断、免疫治疗的重要参数,历来备受研究者关注。本文就GAD及其催化产物GABA的研究进展进行了综述,为更好地研究自身免疫性疾病的发病机理,探索更加有效安全的治疗方法提供参考。  相似文献   

3.
γ-氨基丁酸(γ-aminobutyric acid,GABA)是纹状体(striatum,Str)中重要的抑制性神经递质,介导了纹状体中绝大部分抑制性的神经传递。根据纹状体接收的GABA来源不同将其分为:来自苍白球(globus pallidus,GP)和黑质(substantia nigra,SN)的外源性GABA能神经投射,以及来自纹状体MSNs和中间神经元的内源性GABA能神经投射。GABA能抑制性投射通过影响纹状体的神经调控网络来调节和控制运动行为,多种运动功能障碍性疾病的发生都与纹状体的GABA能抑制性神经投射异常有关。现以GABA为切入点,对GABA能抑制性神经投射对纹状体功能的调节作用进行综述。  相似文献   

4.
近年,调控成年哺乳动物神经干细胞增殖、迁移、分化和成熟的信号分子逐渐被揭示,其中γ-氨基丁酸(gamma-aminobutyric acid,GABA)由兴奋到抑制的转变是神经发生的一个关键环节.与传统的GABA抑制作用不同,在未成熟神经细胞中,GABA以一种自分泌或旁分泌的方式释放并作用于GABAa受体,表现出明显的兴奋作用,这种兴奋对成年动物神经发生起重要调节作用,随着神经元的成熟,GABA的兴奋作用逐渐被抑制作用取代,此后,GABA完成从调节神经发生到传递抑制性神经冲动的转变.GABA调节神经发生的确切机制尚有待进一步研究.  相似文献   

5.
[目的]实现重组大肠杆菌高效合成γ-氨基丁酸(γ-aminobutyric acid,GABA)。[方法]构建表达谷氨酸脱羧酶的基因工程菌Escherichia coli p ET-GAD,对催化工艺进行初步优化,实现高效催化L-谷氨酸脱羧反应合成GABA。[结果]在谷氨酸脱羧酶的表达过程中,维生素B6盐酸吡哆醇(PN)可以替代5-磷酸吡哆醛(PLP)作为辅酶补给,提高工程菌E. coli p ET-GAD的催化活力。在50 m L反应体系中,重组细胞浓度为8 mg/m L,底物浓度为200 mmol/L,在35℃、p H 4. 4条件下反应2 h,L-谷氨酸的转化率 98%。为了提高GABA的生产效率,采用谷氨酸/谷氨酸钠分批补料方式控制反应过程中的p H值,GABA的最终浓度达到247 g/L。[结论]重组大肠杆菌可以高效催化合成γ-氨基丁酸,为基因工程菌工业化制备GABA提供实验依据。  相似文献   

6.
杨恩璐  孙秉贵 《生命科学》2020,32(6):544-550
脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)是一种具有神经营养作用的蛋白质,广泛分布于中枢神经系统内。BDNF及其下游信号通路在γ-氨基丁酸(γ-aminobutyric acid, GABA)能神经元存活、生长、分化、发育等方面均发挥重要的作用。GABA能神经元可以通过释放抑制性神经递质GABA调节神经元活性,进而维持神经环路的正常功能。多种疾病的发生发展都与GABA能神经元发育的异常密切相关。该文将就BDNF及其下游通路与GABA能神经元发育的相关性进行综述,希望为疾病的治疗提供新的方向。  相似文献   

7.
GABA在中枢神经系统发育的早期阶段具有兴奋作用   总被引:2,自引:0,他引:2  
在发育早期中枢神经系统γ-氨基丁酸(γ-aminobutyric acid,GABA)主要作为兴奋性神经递质而发挥作用,它可使神经元产生去极化,升高胞内Ca^2 浓度,此时GABA发挥了重要的神经营养性作用,随着兴奋性谷氨酸能系统的发育,通过Cl^-转运体的表达变化,胞内Cl^-浓度降低,从而使GABA由兴奋性转变为抑制性。  相似文献   

8.
药物成瘾是一种全球性的公共卫生问题,其发生机制十分复杂。γ-氨基丁酸(γ-aminobutyric acid,GABA)是中枢神经系统中主要的抑制性神经递质,其通过调节GABA受体(如:GABA_A,GABA_B)的活性参与多种药物成瘾和依赖性的发生与发展过程。吗啡、可卡因、甲基苯丙胺等药物引起的奖赏、戒断和复吸作用与GABA受体的激活或抑制密切相关。本文将对GABA受体在药物依赖中的作用及机制进行综述,从而为治疗药物成瘾提供新的策略。  相似文献   

9.
目的 研究Ⅱ型囊泡膜谷氨酸转运体(vesicular glutamate transporter 2,VgluT2)阳性终末与γ-氨基丁酸(γ-aminobutyric acid,GABA)阳性神经元在小鼠腰髓背角的分布和联系。方法采用免疫组织化学方法研究VgluT2阳性终末与GABA阳性神经元在小鼠腰髓背角的分布;采用免疫荧光组织化学双重标记方法研究VgluT2阳性终末与GABA阳性神经元在小鼠腰髓背角的联系。结果VgluT2阳性终末与GABA阳性神经元在小鼠腰髓背角各层均有分布,特别是在Ⅱ层内侧部二分布都较为密集,免疫荧光双重标记后在激光共聚焦显微镜下可见GABA阳性神经元周围有许多VGluT2阳性终末与其胞体或突起密切接触。结论小鼠腰髓背角Ⅱ层内侧部GABA阳性神经元直接接受兴奋性传入。  相似文献   

10.
为探讨γ-氨基丁酸(γ-aminobutyric acid,GABA)对DNA胞嘧啶(C)甲基化(5m C)可能的调节机制,该研究以拟南芥的根和愈伤组织为研究材料,分析了经γ-氨基丁酸处理后,5m C的含量及其对GABA信号的响应规律。结果表明,GABA处理显著降低了拟南芥根中DNA 5m C的含量,增加了5-羟甲基胞嘧啶(5hm C)含量;但GABA处理增加了根愈伤组织中5m C含量,降低了5m C的去甲基化过程。这一现象在愈伤组织来源的静止中心细胞(p WOX5-GFP特异性标记)及其周围的干细胞(surrounding stem cells)的继代培养的愈伤组织中得到了进一步验证。研究结果证实了外源性GABA信号触发的DNA甲基化的动态变化在拟南芥的根及其愈伤组织的生长中对GABA的响应具有不同的调节模式,这种模式可能与GABA对干细胞的分裂和干细胞命运的维持有关。  相似文献   

11.
为阐明γ-氨基丁酸(γ-aminobutyric acid,GABA)和生物节律调控的关系,本文以GABA合成(谷氨酸脱羧酶gad等)和代谢(GABA转氨酶GABA-T/pop2、谷氨酸脱氢酶gdh等)突变体,以拟南芥叶片节律性运动为监测指标,探讨了GABA代谢与叶片节律性运动的关系。结果显示,GABA合成突变体(gad1-3)和双突变体gad1/gad2中叶片节律性运动的振幅低于野生型,在gad1、gad2和gad1/gad2中叶片运动的振幅变化明显;pop2突变体中,叶片运动的节律性变化的振幅明显低于对照,gdh1/gdh2突变体中,叶片运动呈现非节律性变化的特点;此外,外源γ-氨基丁酸(1.0 mmol·L-1)不同程度提高拟南芥3种生态型(Col、Ler、Ws)叶片节律性运动的振幅,其中Col生态型和Ws生态型叶片振幅变化明显;在生物钟核心基因突变体toc1、lhy、cca1中,叶片运动呈现非节律性变化模式;但外源GABA的添加能够提高这些突变体叶片节律性运动的振幅或者恢复叶片的节律性。上述结果表明GABA代谢平衡直接和间接影响生物钟节律,外源或内源GABA的合成或代谢突变主要影响到叶片节律性运动的振幅。  相似文献   

12.
衰老导致小脑的生理功能下降,但其神经机制仍然不清楚。为此,利用免疫组织化学方法标记猫小脑皮质内谷氨酸(Glutamate,Glu)和γ-氨基丁酸(γ-Aminobutiric acid,GABA)免疫反应阳性(Glu-IR和GABA-IR)结构,探讨青年猫和老年猫小脑皮质Glu/GABA表达的老年性变化及其可能影响。并利用Image-Pro Express图像分析软件对小脑皮质各层Glu和GABA免疫反应阳性细胞密度及其灰度值进行测量。结果显示:与青年猫相比,老年猫小脑皮质内的Glu免疫反应阳性浦肯野细胞密度、颗粒层Glu免疫反应阳性细胞密度及其两者的免疫阳性反应灰度值均显著下降(P<0.01)(免疫反应强度与平均灰度值成反比);老年猫分子层、浦肯野细胞层GABA免疫反应阳性神经元密度及其免疫反应强度均显著下降(P<0.01);颗粒层GABA免疫反应阳性神经元密度无显著变化(P>0.05),但神经元免疫反应强度显著减弱(P<0.01)。研究结果提示,衰老过程中猫小脑皮质出现神经元Glu的表达增强、GABA的表达减少等,可能是小脑神经元丢失和精确调控能力下降等的重要原因之一。  相似文献   

13.
高等植物体内γ-氨基丁酸合成、代谢及其生理作用   总被引:30,自引:0,他引:30  
对γ-氨基丁酸(GABA)在植物体内的合成、代谢和与之有关的谷氨酸脱羧酶、γ-氨基丁酸转氨酶和琥珀酸半醛脱氢酶的特性,H 、Ca2 、CaM等因素对GABA合成代谢的影响和GABA在高等植物体内可能的生理作用作了介绍。  相似文献   

14.
昆虫γ-氨基丁酸受体研究现状   总被引:5,自引:0,他引:5  
γ-氨基丁酸(gamma-aminobutyric acid,GABA)是脊椎动物和无脊椎动物体内重要的抑制性神经递质,其作用是引起神经传递的抑制,造成突触后膜的超极化,因而抑制动作电位的产生。占领GABA受体或破坏GABA受体的作用即能影响动物(昆虫)正常的突触传递,造成神经功能失常,从而引起死亡。基于此开发的杀虫剂主要有环戊二烯类,阿维菌素类等。近年GABA受体基因及其表达的研究,已为不同的种属GABA受体的亚基组成、生理功能及其对很多杀虫剂药物反应的多样性提供了令人信服的依据。  相似文献   

15.
阿尔茨海默病(Alzheimer’s disease,AD)是最常见的一种中枢神经系统退行性疾病,其主要特征是淀粉样斑块沉积、神经元大量丢失、神经原纤维缠结和认知功能缺陷。研究表明,β淀粉样蛋白(amyloidβ,Aβ)的聚集可能是AD发生过程中导致认知功能缺陷等病理变化的主要起始因子。然而,Aβ诱导病理变化的机制并不清楚。Aβ能够导致兴奋性神经元中谷氨酸能突触传递减少,从而使神经元网络活性受到抑制。但是,最近的研究表明,在AD模型中,Aβ能够引起神经元网络活性异常增加。γ-氨基丁酸能(γ-aminobutyric acid,GABA)抑制性中间神经元功能受损和活性降低可能是造成上述两种不同现象的原因。该文对GABA神经元在Aβ诱导的认知功能缺陷中作用及其机制,以及以GABA神经元为靶点治疗AD的研究现状进行综述。  相似文献   

16.
[目的]γ-氨基丁酸(γ-aminobutyric acid,GABA)是动物神经系统中一种重要的神经递质.本研究旨在鉴定西花蓟马Frankliniella occidentalisγ-氨基丁酸受体(GABA receptors,GABAR)家族基因,明确离子型受体(GABAAR)在西花蓟马对多杀霉素抗性形成中的作用....  相似文献   

17.
外源Glu和GABA对梭梭种子萌发及呼吸速率的影响   总被引:1,自引:1,他引:0  
通过不同浓度外源谷氨酸(Glu)和γ-氨基丁酸(GABA)以及不同比例Glu/GABA处理梭梭种子,研究它们对梭梭种子萌发率、胚根长度和呼吸速率的影响.结果显示:(1)不同浓度的外源Glu均能显著提高梭梭种子的萌发率,促进胚根的伸长并增强其呼吸速率;(2)外源GABA在低浓度(0.1~5mmol·L-1)时能降低种子萌发率,促进胚根伸长,而高浓度(10mmol·L-1)的效应则相反;不同浓度GABA均抑制种子呼吸速率,且低浓度时抑制效果更明显;(3)不同比例Glu/GABA均能降低种子萌发率,抑制胚根伸长,增强呼吸速率.研究发现,梭梭种子的萌发和呼吸受到外源谷氨酸的促进,却受到外源γ-氨基丁酸的抑制.  相似文献   

18.
贯叶连翘抗抑郁研究新进展   总被引:15,自引:0,他引:15  
贯叶连翘,又名圣约翰草,是传统中药材之一,圣约翰草在德国用于抗抑郁症已有几百年的历史。贯叶连翘提取物对轻度和中度抑郁症患者和动物模型都有很好疗效,最新药理学研究表明贯叶连翘提取物中抗抑郁的主要成分是贯叶金丝桃素。贯叶金丝桃素是神经递质5-羟色胺(5-HT)、多巴胺(DA)、去甲肾上腺素(NE)的非竞争性重吸收抑制剂,贯叶金丝桃素还可以抑制突触体对γ氨基丁酸(GABA)和L-谷氨酸(L-glu)的重吸收,其作用机理至今还不甚明了,研究表明它的作用很可能是通过提高突触体细胞内钠离子浓度或通过降低突触体内突触小泡的跨膜pH梯度实现的。  相似文献   

19.
近年来发现脑组织除具有一般的氧化代谢途径外,尚存在着谷氨酸—γ—氨基丁酸—琥珀酸牛醛—琥珀酸支路。这条支路的两个主要的酶就是谷氨酸脱羧酶(以下简称GDC)和γ-氨基丁酸-α-酮戊二酸转氨酶(以下简称 GABA-T)。γ-氨基丁酸(以下简称GABA)除了参与脑中的氧化代谢外,同时也是哺乳类中枢神经系统的一个抑制物质,可能对神经原的兴奋抑制起着调节作用。因此在中枢神经系统各部位 GABA 的含量如何,它的含量与 GDC 或 GABA-T 活力之间的关系又是如何,将是一个很有兴趣的问题。  相似文献   

20.
大脑皮层中存在三大类γ-氨基丁酸(γ-aminobutyric acid, GABA)能抑制性神经元,分别表达小清蛋白(parvalbumin, pv)、生长抑素(somatostatin,SOM)和5-羟色胺受体亚基3A (5-hydroxytryptamine receptor 3A,Htr3a).其中Htr3a阳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号