首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative synthesis of globin chains (α,β,Gγ,Aγ) has been comparatively evaluated in erythroid colonies from 26 fetal livers (7–15 gestational week) and 13 ‘normal’ adult marrows. Clusters deriving from erythroid colony-forming units (CFU-E) were analysed either individually or in pools of –20 colonies. Bursts deriving from earlier erythroid progenitors (erythroid burst-forming unit, ‘primitive’ or ‘mature’, P-BFU-E or M-BFU-E, respectively) were always analysed individually. Since γ-globin synthesis peaks earlier than β-chain production in both the fetal and the adult erythroblastic pathway, the globin synthetic pattern has been comparatively evaluated, in so far as possible, in colonies at an homogenous, advanced stage of hemoglobinization.In fetal liver cultures, the relative β-synthesis in CFU-E clusters, M- and P-BFU-E bursts constantly shows low, fairly uniform values. In adult marrow cultures, the relative γ-production in the corresponding three classes of colonies is characterized by low, rather homogeneous levels (except for more elevated γ-synthetic values occasionally observed in pooled CFU-E clusters comprising a majority of poorly-hemoglobinized colonies). A gradual decrease of relative γ-production has never been observed in colonies deriving from progressively more differentiated erythroid progenitors of both fetal and adult origin.These results suggest that fetal and adult BFU-E are endowed respectively with a program for prevailing HbF or HbA synthesis, which is not substantially modulated at the level of erythroid progenitors under standard culture conditions. By implication, it is postulated that, in fetal and more particularly adult age, modulation of globin synthesis is mediated via mechanism(s) acting at the level of erythroblasts, i.e. at the level of the early γ- and the late β-synthesis in their maturation pathway. The Hb switch (i.e. the switch from prevailingly HbF to HbA synthesis program) is possibly dependent on the ontogenic ‘maturation’ of BFU-E (and/or stem cells), which peaks in the perinatal period.  相似文献   

2.
3.
The relative synthesis of α-, β-, Gγ- and Aγ-globin chains has been evaluated in single fetal liver bursts, which were grown in methylcellulose cultures, individually labelled with [3H]leucine and then analysed via iso-electric focusing. Well-hemoglobinized bursts demonstrate a homogeneous globin synthetic pattern, characterized by prevalent HbF (+some HbA) synthesis: thus, they apparently originate from a homogeneously programmed population of erythroid burst-forming unit (BFU-E). On day 8–9 of culture, the synthetic pattern in ‘mature’ (i.e., well-hemoglobinized) bursts has been compared with that in simultaneously-grown, ‘immature’ (i.e., poorly-hemoglobinized) colonies. These patterns have been further compared with that in ‘matured’ bursts (identified in situ as immature on day 8–9 and labelled 2–4 days later when matured). The ‘immature’ colonies showed very low levels of relative β-globin synthesis, while the ‘mature’ ones demonstrated a more elevated production of β-chain. Significantly, the ‘matured’ bursts showed a globin chain synthetic pattern similar to that of previously labelled ‘matured’ colonies. It is postulated therefore that in fetal liver (and also in adult marrow) the synthesis of γ-chain is linked to an early differentiation stage of erythroblasts, while β-globin synthesis is largely activated at a more advanced maturation stage.  相似文献   

4.
During anemic episodes, goats and certain sheep replace hemoglobin A (HbA = α2β2A) with hemoglobin C (HbC = α2β2C). Rabbit serum directed against either purified sheep HbA or purified sheep HbC was prepared. Both types were used to test whether the two hemoglobins are found in the same cell during switching by an indirect fluorescent antibody assay.Unabsorbed antisheep HbA cross-reacted extensively with goat HbA but to a lesser extent with goat or sheep HbC. Similarly, unabsorbed antisheep HbC reacted with these antigens in the order: Sheep HbC > goat HbC > sheep HbA > goat HbA. Cross-absorption resulted in sera specific either for sheep and goat HbA or for sheep and goat HbC. The specificities were confirmed by indirect fluorescent antibody staining of sheep and goat erythrocytes containing either at least 99% HbA or at least 99% HbC.Smears of erythrocytes from sheep and goats in the process of switching were reacted with one of the absorbed sera then with fluorescein conjugated antirabbit immunoglobulin G. The sum of the fractions stained both by anti-HbA and by anti-HbC exceeded 100% during the switch. Most strikingly when HbA was replacing HbC, nearly all cells stained for HbC while more than half stained for HbA. Thus, the two hemoglobins are found in the same cell during switching.  相似文献   

5.
6.
The accumulation of α- and β-globin mRNA sequences in murine erythroleukemia cells (MELC) treated with various inducers has been studied using specific α- and β-globin complementary DNAs (cDNAs). In cells cultured with dimethylsulfoxide (Me2SO), hexamethylene bisacetamide (HMBA) or butyric acid, accumulation of α-globin mRNA is detectable after 16, 12 and 8 hr of culture, respectively. An increase in β-globin mRNA sequences is not detected until 20–24 hr after culture. In cells exposed to hemin, both α- and β-globin mRNAs are detectable by 6 hr of culture, and a constant ratio of αβ-mRNA is maintained during induction. In maximally induced cells, the αβ-globin mRNA ratios are approximately 1 in cells induced by Me2SO and HMBA, and 0.66 and 0.3–0.50 in cells induced by butyric acid and hemin, respectively. Thus different inducers of erythroid differentiation in MELC lead to different times of onset of the expression of α- and β-like genes. In addition, the relative accumulation of α- and β-globin mRNAs in induced cells differs with various types of inducers.  相似文献   

7.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

8.
To examine the importance of topological constraints on DNA during erythroid development, we measured the effects of camptothecin and teniposide, two tumoricidal agents which are also specific inhibitors of type I and type II topoisomerases respectively, on the formation of hematopoietic colonies by cultured human bone marrow cells. When added to bone marrow culture, each inhibitor alone impairs the formation of early BFU-E-derived colonies, late CFU-E-derived colonies and mixed hematopoietic (CFU-GEMM-derived) colonies by up to 100%. Inhibition of colony formation is directly related to the time of inhibitor addition and the inhibitor concentration tested. Although either inhibitor alone reduces colony formation by 90%, when added together at a submaximal concentration, camptothecin and teniposide exert a synergistic suppressive effect. Furthermore, addition of topoisomerase inhibitors to culture impairs hemoglobinization of colony erythroblasts in a time-dependent fashion. In contrast to the effects of topoisomerase inhibitors, the antiproliferative agent aphidicolin reduces erythroid colony number and size without altering hemoglobinization of colony erythroblasts. Since neither topoisomerase inhibitor alters the morphology of cultured cells, the capacity of cells to exclude trypan blue or the potential to form erythroid colonies through the interval required for the first progenitor cell division, it is unlikely that camptothecin or teniposide are cytotoxic to hematopoietic cells. Human mononuclear cells enriched in bone marrow lymphocytes and nucleated erythroblasts from both human and mouse sources release DNA into the detergent soluble fraction. Release requires functional topoisomerases and is altered by acute exposure to topoisomerase inhibitors. Our results suggest that topoisomerases are critical not only to proliferation but also to differentiation of human marrow erythroid progenitor cells and stem cells in culture.  相似文献   

9.
In mice administered with estradiol benzoate (EB) at 0.2 or 5 μg dose levels, the number of erythroid colony-forming units (CFU-E) in marrow declines progressively starting from 12 through 48 hr. On the other hand hypoxic erythropoietin (Ep) production, although potentiated in animals primed with relatively large dosages of EB (5–25 μg), is significantly diminished after treatment with lower amounts of estrogen (0.2 μg). In mice primed with large amounts of EB, the enhancement of Ep activity apparently compensates the depleting influence on marrow CFU-E, thus leading to a nearnormal erythroid response to hypoxia. On the other hand, a sharp drop of this parameter is observed in animals primed with the lower dosage (0.2 μg), i.e. the depleting influence on the CFU-E pool is not compensated here by potentiation of the Ep response.  相似文献   

10.
11.
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.  相似文献   

12.
The effect of RBC transfusion and erythropoietin (EPO) on the proliferation of immature erythrocyte progenitors was studied in the spleens of RBC transfused, lethally irradiated mice injected with bone marrow. Transfusion decreased expansion of the progenitors and slowed their proliferation: the mean cycle time as measured by per cent labelled mitosis (PLM) on the third day after injection of bone marrow was 10.7 hr in transfused as compared to 5.6 hr in non-transfused mice. One injection of five units of erythropoietin on day 2 decreased the mean cycle time to 7.3 hr in transfused mice and increased expansion of the progenitor cells. The effects of erythropoietin on cell proliferation were prompt: a significant increase of incorporation of 3H-TdR into DNA occurred within 2 hr of injection. Erythroblasts were absent from the spleens of transfused, irradiated bone marrow injected mice; however, erythroblasts appeared by 72 hr and 48 hr following EPO injection either 2 days or 5 days after transplantation respectively. Increased uptake of radioactive iron in spleen after erythropoietin injection preceded the appearance of erythroblasts by 2 and 1 days when erythropoietin was injected either 2 or 5 days after marrow transplantation respectively. The increase in cellular proliferation induced by erythropoietin in transfused irradiated mice injected with bone marrow equivalent to 0.35 femoral shaft was manifested as an increase of the total DNA content in the spleen by 119 μg (11.9 × 106 cells) within 48 hr of injection. The cellular increment produced by EPO injection on day 5 to mice given 0.05 femoral shaft consisted mainly of undifferentiated mononuclear cells, most of which were labelled, with erythroblasts comprising only one quarter of the increment. Erythropoietin inactivated by mild acid hydrolysis failed to increase cellular proliferation.  相似文献   

13.
14.
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.  相似文献   

15.
Target cells for Friend virus-induced erythroid bursts in vitro   总被引:9,自引:0,他引:9  
T A Kost  M J Koury  W D Hankins  S B Krantz 《Cell》1979,18(1):145-152
Erythropoietin (Epo) acts on mouse bone marrow cells in vitro in plasma clot or methyl cellulose culture systems to induce the formation of single erythroid colonies, or clusters of erythroid colonies termed bursts. Our laboratory has recently reported the observation that infection of mouse bone marrow cells in vitro with the polycythemia-inducing strain of Friend virus (FV) resulted in the formation of erythroid bursts after 5 days in plasma clot culture in the absence of added Epo. We have now used this system to characterize the target cells for this FV-induced erythroid transformation. The greatest number of FV bursts were observed when marrow cells were obtained from mice whose erythropoiesis had been stimulated by bleeding or phenylhydrazine treatment. Bleeding also resulted in an increase in the number of FV bursts following the infection of spleen cells in vitro. Hypertransfusion of mice, which results in decreased erythropoiesis, yielded a reduced number of FV bursts in vitro, as did prior treatment with actinomycin D. Cell separation studies using velocity sedimentation at unit gravity showed that the cells, which give rise to FV bursts, sedimented with a modal sedimentation velocity between 5.1–8.5 mm/hr. The Epo-dependent colony-forming unit erythroid (CFU-E), which gives rise to a single erythroid colony, also sediments with a modal velocity between 5.1–8.5 mm/hr, while the Epo-dependent day 8 burst-forming unit erythroid (day 8 BFU-E) sediments with a modal velocity between 3.0–6.0 mm/hr. A 20 min incubation of marrow cells with high specific activity 3H-thymidine, prior to virus infection, resulted in a 75–80% reduction in the number of FV bursts. Mixing cells from the upper portion of the gradient, which yielded no FV bursts, with cells from an area in which high numbers of FV bursts were observed did not result in the inhibition of burst formation. These experiments indicate that the primary target cells for FV bursts in vitro are most probably erythroid precursor cells that have matured beyond the day 8 BFU-E and are closely related to the CFU-E.  相似文献   

16.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

17.
The commitment of novel mouse erythroleukemic (MEL) cells (TSA8) to colony-forming units of erythroid (CFU-E) by dimethylsulfoxide (DMSO) was investigated. After exposure to the inducer in liquid culture, the cells were transferred to a semi-solid culture to examine their ability to form erythroid colonies which were dependent on erythropoietin. Exposure to DMSO for 2 days is optimum for CFU-E type colony formation and colonies induced in this manner are equivalent to CFU-E. The induction occurred in a synchronous manner. Partly stained colonies appeared prior to CFU-E formation and are thought to be a result of asymmetric cell division. Appearance of these partly stained colonies suggested that the number of erythropoietin receptors is important in the complete responsiveness to erythropoietin. TSA8 cells constitute a suitable model system in which to analyse the mechanism of commitment in early erythropoiesis.  相似文献   

18.
Sickle cell disease (SCD) results from a sequence defect in the β-globin chain of adult hemoglobin (HbA) leading to expression of sickle hemoglobin (HbS). It is traditionally diagnosed by cellulose-acetate hemoglobin electrophoresis or high-performance liquid chromatography. While clinically useful, these methods have both sensitivity and specificity limitations. We developed a novel mass spectrometry (MS) method for the rapid, sensitive and highly quantitative detection of endogenous human β-globin and sickle hβ-globin, as well as lentiviral-encoded therapeutic hβAS3-globin in cultured cells and small quantities of mouse peripheral blood. The MS methods were used to phenotype homozygous HbA (AA), heterozygous HbA–HbS (AS) and homozygous HbS (SS) Townes SCD mice and detect lentiviral vector-encoded hβAS3-globin in transduced mouse erythroid cell cultures and transduced human CD34+ cells after erythroid differentiation. hβAS3-globin was also detected in peripheral blood 6 weeks post-transplant of transduced Townes SS bone marrow cells into syngeneic Townes SS mice and persisted for over 20 weeks post-transplant. As several genome-editing and gene therapy approaches for severe hemoglobin disorders are currently in clinical trials, this MS method will be useful for patient assessment before treatment and during follow-up.  相似文献   

19.
Infection of BALB/c mice with Rauscher leukemia virus (RLV) gives rise to pronounced erythrocytopoiesis manifesting in splenomegaly and is associated with progressive development of anemia. In the spleen erythroid colony forming units (CFU-E) increase exponentially up to 800-fold that of normal levels by the third week of infection. In vitro these CFU-E are dependent on erythropoietin for colony formation, their erythropoietin requirements being higher than that of CFU-E from normal mice. Numbers of CFU-E in spleen and degree of splenomegaly in anemic RLV infected mice were also shown to be modified by red blood cell transfusion, but progression of the disease was not stopped. Erythroid burst forming units (BFU-E) were also responsive to erythropoietin. However, a small proportion of cells also formed BFU-E colonies at concentrations which did not support growth of normal marrow BFU-E. When compared to normal, CFU-E found in RLV-infected spleen have similar velocity sedimentation rates. However, buoyant density separation of leukemic spleen cells indicated that CFU-E were more homogeneous (modal density 1.0695 g/cm3) than CFU-E from normal spleen. Analysis of physical properties of CFU-E and the nonhemoglobinized erythroblast-like cells, which accumulate in the spleen showed that they differed mainly in their distribution of cell diameter. Our findings show that erythroid progenitor cells in RLV infected mice are responsive to erythropoietin in vitro. Also in vivo erythropoiesis appears to be under control of erythropoietin but other factors which lead to progression of RLV disease apparently exist. Most proerythroblast-like cells, which are characteristic of this disease, apparently lack the potential to form colonies and may be more mature than CFU-E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号