首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Poly (Val-Gly-Gly-Leu-Gly), a polypeptide mimicking the physico-chemical properties of the glycine-rich regions of elastin, has been synthesized and studied both in solution and in the aggregated state. By comparison, also the conformation of different “monomeric” units has been investigated. The polymer showed increased disorder with respect to the “monomers”, the molecular conformation being accounted for by a more or less random collection of isolated β-turns. Nevertheless, in the solid state the polymer is able to adopt supramolecular structures reminiscent of those found for elastin.  相似文献   

2.
The elucidation of structure-function relationships in insoluble elastin is often approached using elastin-like polypeptides. In this manner, the characterization of the different regions in this extensive biopolymer may be facilitated in a "piece-wise" manner. Our solid-state NMR experiments indicate that (LGGVG)n has structural similarities to elastin and some elastin peptides, providing support for the utility of the mimetic peptides. Furthermore, previous NMR and CD studies indicated that the structure of the elastin-like polypeptide (LGGVG)n in solution is best described as a "conformational ensemble" with a mixture of type I and II beta-turns, in addition to unfolded regions. Our data indicate that the peptide does not adopt a single conformation in the solid state, lending further support to models for elastin that involve significant conformational heterogeneity.  相似文献   

3.
4.
Poly(LGGVG) a potential elastin-like biomaterial has been synthesized and studied both in solution (by circular dicroism and nuclear magnetic resonance) and in the aggregated state (by transmission electron microscopy). For sake of comparison, also the conformation of the protected (Boc-LGGVG-OEt) and free (H(2)(+)-LGGVG-OH) 'monomers' has been investigated. While in the latter ones the presence has been evidenced of more or less stable type II beta-turns, the polymer showed a conformational ensemble, possibly comprising type II beta-turns, type I beta-turns and open (unordered) structures. At supramolecular level, twisted-rope aggregates were observed by transmission electron microscopy for the polymer. Thus, the title compound has shown to possess, at both molecular and supramolecular level, physico-chemical properties very similar to those of elastin, so to give some confidence that it could really constitute the precursor of an artificial substitute of elastin itself.  相似文献   

5.
We have established that treatment of cultured human skin fibroblasts with tropoelastin or with heterogenic peptides, obtained after organo-alkaline or leukocyte elastase hydrolysis of insoluble elastin, induces a high expression of pro-collagenase-1 (pro-matrix metalloproteinase-1 (pro-MMP-1)). The identical effect was achieved after stimulation with a VGVAPG synthetic peptide, reflecting the elastin-derived domain known to bind to the 67-kDa elastin-binding protein. This clearly indicated involvement of this receptor in the described phenomenon. This notion was further reinforced by the fact that elastin peptides-dependent MMP-1 up-regulation has not been demonstrated in cultures preincubated with 1 mm lactose, which causes shedding of the elastin-binding protein and with pertussis toxin, which blocks the elastin-binding protein-dependent signaling pathway involving G protein, phospholipase C, and protein kinase C. Moreover, we demonstrated that diverse peptides maintaining GXXPG sequences can also induce similar cellular effects as a "principal" VGVAPG ligand of the elastin receptor. Results of our biophysical studies suggest that this peculiar consensus sequence stabilizes a type VIII beta-turn in several similar, but not identical, peptides that maintain a sufficient conformation to be recognized by the elastin receptor. We have also established that GXXPG elastin-derived peptides, in addition to pro-MMP-1, cause up-regulation of pro-matrix metalloproteinase-3 (pro-stromelysin 1). Furthermore, we found that the presence of plasmin in the culture medium activated these MMP proenzymes, leading to a consequent degradation of collagen substrate. Our results may be, therefore, relevant to pathobiology of inflammation, in which elastin-derived peptides bearing the GXXPG conformation (created after leukocyte-dependent proteolysis) bind to the elastin receptor of local fibroblasts and trigger signals leading to expression and activation of MMP-1 and MMP-3, which in turn exacerbate local connective tissue damage.  相似文献   

6.
The charge structure and ionic interactions of elastin prepared from the pig thoracic aorta by acid, alkali, or CNBr extraction have been investigated by potentiometric titration and radiotracer techniques. The number of charged groups was consistent with the amino acid composition, comparable to elastin from other sources and insensitive to the method of preparation. The enthalpies of ionization of the basic groups were comparable for those previously found for proteins but those of the acidic groups were higher. Ionic interactions were predominantly electrostatic although a strong affinity for chloride ions was noted. Changes in ionic interactions as the elastin was stretched had a similar effect to an increase in the apparent fixed charge density of the tissue. Mechanical strain altered the protonation of the elastin and the pK of the carboxyl groups. Conversely, the conformation of the elastin network varied with ionic strength and pH, being particularly sensitive to the degree of ionization of the more basic groups and with the ionic strength and anion composition of the medium. We speculate that strain induced changes in the conformation of elastin altering its reactivity towards lipids, ions or matrix macromolecules or changes in its mechanical properties resulting from changes in its ionic environment may be of physiological or pathological importance.  相似文献   

7.
8.
The thermoelastic behavior of water solvated elastin has been investigated in simple tension, in the temperature range 0–70°C. Specimens purified from both the ox ligamentum nuchae and pig thoracic aorta have been studied. Force data obtained by cycling the temperature for various constant specimen lengths display a separated variable dependence of the form f = A(T)B(α), where T is absolute temperature and α the extension ratio. For ligament elastin B(α) is a linear function whereas for aortic elastin it is a nonlinear function. The applicability of the rubber elasticity theory to elastin has been tested by setting A(T) equal to the temperature-dependent front factor for simple tension of a homogeneous rubber whilst B(α) is left undefined. In this way it has been possible to take into account the fibrous nonhomogeneity of the polymer, and also to avoid any inconsistency within the theory of attributing a dependence of the variable fe/f upon extension ratio. The behavior of both ligament and aortic elastin agrees well with the conclusion that the dominant deformation mechanism is entropy elastic, fe/f ? 1. The linearity of the load isotherm for ligament elastin permits a particularly simple experimental procedure using a single force-temperature plot for one value of interclamp length. Using this procedure high precision has been obtainble, and the data shows a close adherence to the theory with fe/f = 0.1. The relationship between this result and current controversy over the molecular conformation of elastin is discussed.  相似文献   

9.
In this study, one- and two-dimensional NMR experiments are applied to uniformly (15)N-enriched synthetic elastin, a recombinant human tropoelastin that has been cross-linked to form an elastic hydrogel. Hydrated elastin is characterized by large segments that undergo "liquid-like" motions that limit the efficiency of cross-polarization. The refocused insensitive nuclei enhanced by polarization transfer experiment is used to target these extensive, mobile regions of this protein. Numerous peaks are detected in the backbone amide region of the protein, and their chemical shifts indicate the completely unstructured, "random coil" model for elastin is unlikely. Instead, more evidence is gathered that supports a characteristic ensemble of conformations in this rubber-like protein.  相似文献   

10.
The conformation of a cyclic decapeptide analog of a repeat sequence of elastin has been determined in the crystalline state using X-ray crystallographic techniques. Tetragonal crystals were grown from a solution of the decapeptide in water; space group P4(2)2(1)2, a = 19.439(2) & c = 13.602(1) A, with four formula units (C40H66N10O10.4H2O) per unit cell. The cyclic decapeptide in the crystal exhibits exact twofold symmetry. The asymmetric unit contains one pentapeptide and two water molecules for a total of 32 nonhydrogen atoms. The structure has been determined by the application of direct methods and refined by full-matrix least squares to an R index of 0.053 for 2272 reflections with intensities greater than 2 sigma(I). The backbone conformation of the asymmetric pentapeptide can be described as consisting of a double beta bend of Type III-I. The Type III turn has Pro (phi = -59.3 degrees, psi = -26.8 degrees) and Ala (phi = -65.9 degrees, psi = -23.1 degrees) at the corners while Type I turn has Ala (phi = -65.9 degrees, psi = -23.1 degrees) and Val (phi = -98.9 degrees, psi = 8.3 degrees) as the corner residues. The cyclic decapeptide has two such double bends linked together by Gly-Val bridges.  相似文献   

11.
We used electronic circular dichroism (CD) and UV resonance Raman (UVRR) spectroscopy at 204 nm excitation to examine the temperature dependence of conformational changes in cyclic and linear elastin peptides. We utilize CD spectroscopy to study global conformation changes in elastin peptides, while UVRR is utilized to probe the local conformation and hydrogen bonding of Val and Pro peptide bonds. Our results indicate that at 20 degrees C cyclic elastin predominantly populates distorted beta-strand, beta-type II and beta-type III turn conformations. At 60 degrees C, the beta-type II turn population increases, while the distorted beta-strand population decreases. Linear elastin predominantly adopts distorted beta-strand and beta-type III turn conformations with some beta-type II turn population at 20 degrees C. Increasing temperature to 60 degrees C results in a small increase in the turn population.  相似文献   

12.
Fleischhacker AS  Matthews RG 《Biochemistry》2007,46(43):12382-12392
Cobalamin-dependent methionine synthase (MetH) of Escherichia coli is a large, modular enzyme that uses a cobalamin prosthetic group as a donor or acceptor in three separate methyl transfer reactions. The prosthetic group alternates between methylcobalamin and cob(I)alamin during catalysis as homocysteine is converted to methionine using a methyl group derived from methyltetrahydrofolate. Occasional oxidation of cob(I)alamin to cob(II)alamin inactivates the enzyme. Reductive methylation with flavodoxin and adenosylmethionine returns the enzyme to an active methylcobalamin state. At different points during the reaction cycle, the coordination state of the cobalt of the cobalamin changes. The imidazole side chain of His759 coordinates to cobalamin in a "His-on" state and dissociates to produce a "His-off" state. The His-off state has been associated with a conformation of MetH that is poised for reactivation of cobalamin by reductive methylation rather than catalysis. Our studies on cob(III)alamins bound to MetH, specifically aqua-, methyl-, and n-propylcobalamin, show a correlation between the accessibility of the reactivation conformation and the order of the established ligand trans influence. The trans influence also controls the affinity of MetH in the cob(III)alamin form for flavodoxin. Flavodoxin, which acts to shift the conformational equilibrium toward the reactivation conformation, binds less tightly to MetH when the cob(III)alamin has a strong trans ligand and therefore has less positive charge on cobalt. These results are compared to those for cob(II)alamin MetH, illustrating that access to the reactivation conformation is governed by the net charge on the cobalt as well as the trans influence in cob(III)alamins.  相似文献   

13.
Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature‐dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin‐derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin‐derived polypeptide (Val‐Pro‐Gly‐Val‐Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n > 40) is required for coacervation. In the present study, a series of elastin‐derived peptide (Phe‐Pro‐Gly‐Val‐Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin‐derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature‐dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet‐turn‐sheet motif involving a type II β‐turn‐like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin‐derived peptides, but also as base materials for developing various temperature‐sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Synthesis and accumulation of elastin in many elastic tissues begins in the last third of fetal development, reaches a maximum shortly after birth, and then declines rapidly. For the aorta of the chick and the pig and the ligamentum nuchae and lung of the sheep, it has been shown that increased levels of elastin production with fetal development are correlated with increased levels of elastin mRNA in the tissue, measured both by cell-free translation and by hybridization to cDNA probes. In this study we examine the relationship between insoluble elastin accumulation and message levels for tropoelastin in aortic tissue of chickens during posthatching development and growth. Whether evaluated by cell-free translation or by dot blot hybridization, steady state levels of tropoelastin message increase to a maximum at 2 weeks after hatching, and then fall rapidly with further development and growth. This pattern correlates well with production of insoluble elastin by the aorta, determined either by direct measurements of synthesis or by rate of accumulation of insoluble elastin. The data indicate that the major site of regulation of elastin production is pretranslational throughout the entire period of development and growth of the chicken aorta.  相似文献   

15.
Polypentapeptides (GVGVP)n which are designed in analogy to the connective tissue protein elastin are reported to transform various kinds of energy into mechanical work by the so-called deltaT(t)-mechanism in cross-linked macroscopic polypentapeptide (PPP) films. In the literature, the responsible element of conformation in such polypeptides is described as a beta-spiral and the deltaT(t) effect is explained as a sudden change of macroconformation of single polypeptide molecules from an extended but not regular state below a transition temperature T(t) to the beta-spiral above T(t). We examined the secondary structure of the linear PPP C(GVGVP)6 in solution with DSC, CD, UV absorption, FTIR and NMR spectroscopy. The results suggest that the beta-spiral is not present in the conformational structure of the PPP molecules. The antiparallel beta-sheet is proposed to be the basic regular part of conformation because it agrees with all spectroscopic data. As a consequence, the elasticity of natural elastin must be considered from a new perspective.  相似文献   

16.
Circular dichroic studies of a desmosine crosslinked peptide reveal a hitherto undescribed elastin spectrum possessing a weak negative band at 230–235 nm, a weak positive band at 215 nm, and a maximum negative band at 190 nm. The spectrum is sensitive to both pH and temperature displaying increased ellipticity of the 215-nm band at acidic pH and low temperature. The general shape of the spectrum and its behaviour toward temperature changes suggest the presence of an extended helical conformation. Susceptibility of insoluble elastin to digestion with chymotrypsin is increased tenfold at low temperature (4°C), supporting the contention that the conformational change of the type described above occurs in insoluble elastin. Such changes in conformation would result in increased availability of aromatic amino-acid resiudues to peptide bond cleavage.  相似文献   

17.
M Cascio  B A Wallace 《Proteins》1988,4(2):89-98
The secondary structure of alamethicin, a membrane channel-forming polypeptide, has been examined by circular dichroism spectroscopy to determine the relationship of its conformation in organic solution to its conformation in a membrane-bound state. The spectrum of alamethicin in small unilamellar dimyristoyl phosphatidylcholine vesicles is significantly different from its spectrum in 10% methanol/acetonitrile, the solvent from which it was crystallized (Fox and Richards: Nature 300:325-330, 1982), as well as its spectrum in methanol, the solvent in which NMR studies have been done (Banerjee and Chan: Biochemistry 22:3709-3713, 1983). This suggests that structural models based on studies of the molecule in organic solvents may not be entirely appropriate for the membrane-bound state. To distinguish between different models for channel formation and insertion, two different methods were used to associate the alamethicin with vesicles; in addition, the effect of oligomerization on the conformation of the membrane-bound state was investigated. These studies are consistent with a modified insertion model in which alamethicin monomers, dimers, or trimers associate with the bilayer and then spontaneously oligomerize to form a prechannel with a higher helix content. This aggregate could then "open" upon application of an appropriate gating transmembrane potential.  相似文献   

18.
19.
O Arad  M Goodman 《Biopolymers》1990,29(12-13):1633-1649
Depsipeptide analogues of peptide sequences can help in elucidating the role of specific hydrogen bonds in determining the conformation in peptides. The repeating pentapeptide and hexapeptide sequences of elastin have been suggested to contain a type II beta-turn with a 4----1 hydrogen bond. Depsipeptide analogues of the repeating sequences of elastin in which this 4----1 hydrogen bond cannot exist were synthesized. A fragment condensation approach was employed in which the depsipeptide ester bond was introduced early in the synthesis. This approach proved to be effective, although the increased lability of the depsipeptide ester bond resulted in side products and low yields in some reactions.  相似文献   

20.
We present lamellar self-assembly of cationic poly(L-histidine) (PLH) stoichiometrically complexed with an anionic surfactant, dodecyl benzenesulfonic acid (DBSA), which allows a stabilized conformation reminiscent of polyproline type II (PPII) left-handed helices. Such a conformation has no intrapeptide hydrogen bonds, and it has previously been found to be one source of flexibility, e.g., in collagen and elastin, as well as an intermediate in silk processing. PLH(DBSA)1.0 complexes were characterized by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The PPII-like conformation in PLH(DBSA)1.0 is revealed by characteristic CD and FTIR spectra, where the latter indicates absence of intrachain peptide hydrogen bonds. In addition, a glass transition was directly verified by DSC at ca. 135 degrees C for PLH(DBSA)1.0 and indirectly by SAXS and TEM in comparison to pure PLH at 165 degrees C, thus indicating plasticization. Glass transitions have not been observed before in polypeptide-surfactant complexes. The present results show that surfactant binding can be a simple scheme to provide steric crowding to stabilize PPII conformation to tune the polypeptide properties, plasticization and flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号