首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The administration of 2,4-dinitrofluorobenzene (DFB) (0.1-1 mM) to the ileal longitudinal muscle produced contractions within seconds of its administration. 2. A component of the first 2 min duration of the phasic phase of 1 or 0.5 mM DFB contraction and the first phase of 0.35 or 0.1 mM DFB contraction was inhibited by Ca2+ antagonists, 1 x 10(-6) M D-600. 3. The DFB contraction resistant to D-600 began to develop when the tissue ATP concentration rapidly reduced. 4. The DFB contraction in ileum consists of two components; an initial fast contraction which is sensitive to Ca2+ antagonists, and a late contraction referred to as a rigor which is resistant to it.  相似文献   

2.
The kinetics of force production in chemically skinned trabeculae from the guinea pig were studied by laser photolysis of caged ATP in the presence of Ca2+. Preincubation of the tissue during rigor with the enzyme apyrase was used to reduce the population of MgADP-bound cross-bridges (Martin and Barsotti, 1994). In untreated tissue, tension remained constant or dipped slightly below the rigor level immediately after ATP release, before increasing to the maximum measured in pCa 4.5 and 5 mM MgATP. The in-phase component stiffness, which is a measure of cross-bridge attachment, exhibited a large decrease before increasing to 55% of that measured in rigor. Neither the rate of the decline nor of the rise in tension was sensitive to the concentration of photolytically released ATP. The rate of the decline in stiffness was found to be dependent on [ATP]: 1.8 x 10(4) M-1/s-1, a value more than four times higher than that previously measured in similar experiments in the absence of Ca2+. The rate of tension development averaged 14.9 +/- 2.5 s-1. Preincubation with apyrase altered the mechanical characteristics of the early phase of the contraction. The rate and amplitude of the initial drop in both tension and stiffness after caged ATP photolysis increased and became dependent on [ATP]. The second-order rate constants measured for the initial drop in tension and stiffness were 8.4 x 10(4) M-1 s-1 and 1.5 x 10(5) M-1 s-1. These rates are more than two times faster than those previously measured in the absence of Ca2+. The effects of apyrase incubation on the time course of tension and stiffness were consistent with the hypothesis that during rigor, skinned trabeculae retain a significant population of MgADP-bound cross-bridges. These in turn act to attenuate the initial drop in tension after caged ATP photolysis and slow the apparent rate of rigor cross-bridge detachment. The results also show that Ca2+ increases the rate of cross-bridge detachment in both untreated and apyrase-treated tissue, but the effect is larger in untreated tissue. This suggests that in cardiac muscle Ca2+ modulates the rate of cross-bridge detachment.  相似文献   

3.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

4.
In rat thoracic aorta, 12-0-tetradecanoyl-phorbol-13-acetate (TPA) caused a slowly onset, sustained vascular contraction. The contraction was markedly reduced in the absence of extracellular Ca2+, although small tension development was still observed. The tension developed by TPA in the presence of Ca2+ was decreased by serial addition of a Ca2+-channel blocker, verapamil in a concentration-dependent manner. TPA could cause vascular contraction to almost maximum level at lower concentration of extracellular Ca2+, compared with KCl- or norepinephrine-induced contraction. These results suggest that extracellular Ca2+ which influxes through Ca2+-channels into cytoplasm is necessary for full tension development by TPA, and that TPA increases sensitivity of contractile mechanisms coupling with Ca2+.  相似文献   

5.
The effect of energy deprivation and H2O2 on the contraction, shape, and intracellular free Ca2+ concentration of myocardial muscle cells was investigated using suspensions of freshly isolated, electrically stimulated rat ventricle heart cells. The mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to decrease the rate of ATP synthesis. At 0.9 mM extracellular Ca2+, CCCP (0.25 microM) reduced the number of contracting cells by 50% after 5 min, and the number of rod-shaped cells by 40% after 10 min. The effects of CCCP were associated with a substantial decrease in measured cellular ATP concentrations. The deleterious effect of exposure of myocytes to CCCP for periods of up to 5 min was enhanced by an increase in the extracellular Ca2+ concentration, but markedly reduced in the absence of electrical stimulation. Verapamil protected myocytes from the deleterious effects of CCCP during the first 5 min but not at later times. In the presence of 46 mM extracellular K+, CCCP caused a marked increase in the myoplasmic free Ca2+ concentration (measured using quin2). This effect was inhibited by verapamil and was not observed in the absence of K+-induced depolarization. Exposure of myocytes to H2O2 (0.5 mM) caused a substantial decrease both in the number of cells which exhibited normal end-to-end synchronous contraction and in the total number of cells which contracted either partially or fully. The effects of H2O2 were more pronounced at higher concentrations of the peroxide, with longer times of exposure to the agent, and at higher concentrations of extracellular Ca2+, and were partially reversed by dimethyl sulfoxide. The results indicate that both ATP deprivation and H2O2, possibly through the generation of free radicals, cause substantial and rapid damage to cardiac myocytes and induce the movement of additional Ca2+ across the sarcolemma to the myoplasm. In the case of ATP deprivation, this initially occurs through voltage-operated channels.  相似文献   

6.
A new method for preparing permeabilized smooth muscle fibers from rabbit mesenteric artery has been developed using alpha-toxin, a transmembrane pore-making exo-protein produced by Staphylococcus aureus. After alpha-toxin treatment the fibers developed tension as a function of Ca2+ concentration (EC50 = 890 nM). But they could not contract without added ATP, indicating ATP is permeable. When the sarcoplasmic reticulum was loaded with 5 X 10(-7) M Ca2+ solution, NE induced a transient contraction in 2 mM EGTA 0 M Ca2+ solution and a transient and maintained contraction in 5 X 10(-7) M Ca2+ solution. GTP-gamma-S, a non-hydrolyzable analogue of GTP, substituted for NE in producing these contractile effects. The analysis of the relationship between Ca2+ and maintained tension revealed that NE and GTP-gamma-S cause increases in Ca2+ sensitivity of myofilament shifting the EC50 to 280 nM and 160 nM, respectively. We conclude that NE or GTP-gamma-S causes an increase in myofilament Ca2+ sensitivity and that G protein may be involved in receptor signal transduction system. alpha-Toxin is a useful tool to permeabilize the smooth muscle tissue to ions and small molecules without any damage of receptor and signal transduction system.  相似文献   

7.
The purpose of these experiments was to study the temporal relationship between tension development in incubated guinea pig tracheal smooth muscle and changes in tissue levels of cAMP and cGMP, and isotopic Ca. Dose-response studies were performed with increasing concentrations of histamine both in the absence and presence of H1 receptor blockade using 10(-5) M diphenhydramine. The time course of tension development was subsequently determined in the presence of three concentrations of histamine shown to cause 50% (3 X 10(-6) M), 85% (9 X 10(-6) M), and 100% (5 X 10(-5) M) of maximal contraction. Tissue cyclic nucleotide and 45Ca levels were measured 20 sec, 1 min, and 6 min after the onset of contraction. For comparison, the influence of carbachol was also studied. Our findings demonstrate that there were no detectable alterations in tissue cAMP or cGMP levels during the initial phases of contractile change. In contrast, tissue isotopic Ca uptake increased early in histamine-induced contraction and was blocked by the H1 antagonist.  相似文献   

8.
This study investigated the effects of acute creatine kinase (CK) inhibition (CKi) on contractile performance, cytosolic Ca2+ concentration ([Ca2+]c), and intracellular PO2 (PIO2) in Xenopus laevis isolated myocytes during a 2-min bout of isometric tetanic contractions (0.33-Hz frequency). Peak tension was similar between trials during the first contraction but was significantly (P < 0.05) attenuated for all subsequent contractions in CKi vs. control (Con). The fall in PIO2 (DeltaPIO2) from resting values was significantly greater in Con (26.0 +/- 2.2 Torr) compared with CKi (17.8 +/- 1.8 Torr). However, the ratios of Con to CKi end-peak tension (1.53 +/- 0.11) and DeltaPO2 (1.49 +/- 0.11) were similar, suggesting an unaltered aerobic cost of contractions. Additionally, the mean response time (MRT) of DeltaPIO2was significantly faster in CKi vs. Con during both the onset (31.8 +/- 5.5 vs. 49.3 +/- 5.7 s; P < 0.05) and cessation (21.2 +/- 4.1 vs. 68.0 +/- 3.2 s; P < 0.001) of contractions. These data demonstrate that initial phosphocreatine hydrolysis in single skeletal muscle fibers is crucial for maintenance of sarcoplasmic reticulum Ca2+ release and peak tension during a bout of repetitive tetanic contractions. Furthermore, as PIO2 fell more rapidly at contraction onset in CKi compared with Con, these data suggest that CK activity temporally buffers the initial ATP-to-ADP concentration ratio at the transition to an augmented energetic demand, thereby slowing the initial mitochondrial activation by mitigating the energetic control signal (i.e., ADP concentration, phosphorylation potential, etc.) between sites of ATP supply and demand.  相似文献   

9.
We have developed a novel system using digital imaging microscopy with indo-1 to measure the cytosolic free calcium concentration [( Ca2+]i). The method is particularly suitable for measuring the rapid change in [Ca2+]i in relation to the cell motion. With this system, we made the first successful simultaneous measurement of [Ca2+]i and cell circumference during contraction in an electrically stimulated single rat ventricular myocyte. It was found that the level of [Ca2+]i was elevated during contraction, and that the onset and peak time of the calcium transient preceded that of the decrease in circumference.  相似文献   

10.
In order to obtain a better understanding of Ca2+-activated ATP hydrolysis by sarcoplasmic reticulum, the transient kinetics of phosphorylated intermediate (EP) formation was examined with different sequences of addition of Ca2+ and ATP to GEDTA-added (Ca2+-free) fragmented sarcoplasmic reticulum (FSR) from bullfrog skeletal muscle. With a short delay line (10-20 ms), the addition sequence of ATP followed by Ca2+ gives rise to a faster EP formation without any lag time. In the reverse sequence of ligand addition, a lag time of 2.5-3 ms was consistently observed irrespective of ATP concentration, and the rate of EP formation was lower. As the preincubation time with Ca2+ became longer, the rate constant for EP formation and the maximum level of EP attainable increased even in the presence of fixed concentrations of Ca2+ and ATP. The rate constant per the unit concentration of EP, however, remained constant, indicating second-order kinetics between Ca2+-activated FSR and ATP. With a preincubation time of 83.6 ms, no lag time was observed. In the addition sequence of ATP and 83.6 ms later Ca2+, a burst in EP formation was observed, which was followed by a usual exponential time-course of EP formation. Similar determinations in the presence of various concentrations of ATP led us to the following estimates of the rates of the reactions leading to EP formation at 15 degrees C. (formula: see text)  相似文献   

11.
Nicorandil, an antianginal drug, is known to open K+ channel and to increase cGMP production. The effects of nicorandil on vascular contraction induced by endothelin (ET), a potent newly discovered vasoconstrictor peptide, were investigated using helical strips from rat thoracic aorta. ET at a concentration of 5 x 10(-9) M induced strong and persistent contraction in the presence of extracellular Ca2+ and similar persistent but smaller contraction in the absence of extracellular Ca2+. Nicorandil at concentrations greater than 10(-7) M, strongly and dose-dependently inhibited ET-induced contraction in the presence of extracellular Ca2+. Nicorandil also suppressed ET-induced contraction in the presence of 10(-4) M methylene blue, an inhibitor of cGMP production, in the presence of extracellular Ca2+ but not in the absence of extracellular Ca2+. ET-induced contraction was also inhibited to lesser extents by the Ca2+ channel blockers nicardipine and verapamil. Nicorandil also strongly suppressed ET-induced increase in cytosolic free Ca2+ concentration in cultured vascular smooth muscle cells. These results suggest that nicorandil is a potent dilator of ET-induced vasoconstriction.  相似文献   

12.
Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.  相似文献   

13.
Relaxation in extracted muscle fibers   总被引:2,自引:0,他引:2  
1. Ethylenediamine tetraacetic acid (EDTA) in low concentrations imitates all the known effects of the relaxation factor ("Marsh factor"). In extracted muscle fibers which have contracted in a solution containing adenosinetriphosphate (ATP), the addition of EBTA causes relaxation, the subsequent addition of CaCl2, contraction. 2. In fibers which have been briefly immersed in 5 MM EDTA, ATP causes rapid relaxation if Mg is also present. These fibers have essentially the same properties as briefly extracted fibers. Brief immersion into a solution containing CaCl2 restores at once the original condition. It is concluded that EDTA produces its action by firmly combining with bound Ca, thereby inactivating it. 3. In relaxed muscle fibers not only Ca, but also lowering the concentration of Mg below a critical level, causes contraction. In such fibers Mg in the lowest effective concentrations increases contraction, but the effect reverses above a certain concentration. 4. At 0° Mg in the presence of ATP has a relaxing effect without the relaxation factor. 5. The results indicate that Mg has two distinct effects in the presence of ATP. It causes contraction at low concentrations, but above a critical concentration its relaxing action prevails. The last of these effects is blocked by bound Ca. If the latter is inactivated by EDTA, Mg in sufficiently high concentrations causes relaxation. The action of the relaxation factor can similarly be explained by assuming that it acts as a complexing agent which inactivates bound Ca. 6. Previous evidence that the relaxed state depends on the formation of an enzymatically inactive ATP-protein complex was confirmed. It was found that PP in low concentrations strongly increases the relaxing effect of ATP in briefly extracted fibers.  相似文献   

14.
Sarcoplasmic reticulum vesicles were adsorbed on an octadecanethiol/phosphatidylcholine mixed bilayer anchored to a gold electrode, and the Ca-ATPase contained in the vesicles was activated by ATP concentration jumps both in the absence and in the presence of K(+) ions and at different pH values. Ca(2+) concentration jumps in the absence of ATP were also carried out. The resulting capacitive current transients were analyzed together with the charge under the transients. The relaxation time constants of the current transients were interpreted on the basis of an equivalent circuit. The current transient after ATP concentration jumps and the charge after Ca(2+) concentration jumps in the absence of ATP exhibit almost the same dependence upon the Ca(2+) concentration, with a half-saturating value of approximately 1.5 microM. The pH dependence of the charge after Ca(2+) translocation demonstrates the occurrence of one H(+) per one Ca(2+) countertransport at pH 7 by direct charge-transfer measurements. The presence of K(+) decreases the magnitude of the current transients without altering their shape; this decrease is explained by K(+) binding to the cytoplasmic side of the pump in the E(1) conformation and being released to the same side during the E(1)-E(2) transition.  相似文献   

15.
Low concentrations of digitonin disrupt the sarcolemma of adult rat heart myocytes selectively and completely. When the digitonin lysis is carried out in the presence of 10 mM Mg-ATP, the permeabilized cells retain the rod-cell morphology typical of heart cells in situ and show spontaneous phasic contractions. The rate of contraction is a function of the free Ca2+ concentration from a pCa of 7.2 to 5.2. Higher levels of free Ca2+ result in hypercontracture of the myocytes into round cells with characteristically distorted morphology. The sarcoplasmic reticulum of digitonin-lysed myocytes takes up Ca2+ in an ATP-dependent reaction that is inhibited and reversed by caffeine and strongly enhanced by procaine or ruthenium red. The Ca2+ accumulation has a Km of 0.6 microM Ca2+, depends on Pi (Km of 13 mM), and is strongly inhibited by bicarbonate ion. The hypercontracture of digitonin-lysed myocytes is a function of both the pCa and the Mg-ATP concentration of the suspending medium. Hypercontracture requires ATP. Hypercontracture due to Ca2+ overload occurs at lower Ca2+ concentrations when Mg-ATP is decreased from 10 to 1 mM. However, at low concentrations of Mg-ATP (in the range from 1 to 10 microM), hypercontracture also occurs and is essentially Ca2+-independent. Since hypercontracture of heart myocytes appears analogous to the formation of contraction bands in situ, these observations may be relevant to the phenomena of oxygen paradox and of Ca2+ paradox in intact myocardial tissue.  相似文献   

16.
The present study was designed to test the hypothesis that in cerebral arteries of the fetus, ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) channels (K(Ca)) play an important role in the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) and that this differs significantly from that of the adult. In main branch middle cerebral arteries (MCA) from near-term fetal ( approximately 140 days) and nonpregnant adult sheep, simultaneously we measured norepinephrine (NE)-induced responses of vascular tension and [Ca(2+)](i) in the absence and presence of selective K(+)-channel openers/blockers. In fetal MCA, in a dose-dependent manner, both the K(ATP)-channel opener pinacidil and the K(Ca)-channel opener NS 1619 significantly inhibited NE-induced tension [negative logarithm of the half-maximal inhibitory concentration (pIC(50)) = 5.0 +/- 0.1 and 8.2 +/- 0.1, respectively], with a modest decrease of [Ca(2+)](i). In the adult MCA, in contrast, both pinacidil and NS 1619 produced a significant tension decrease (pIC(50) = 5.1 +/- 0.1 and 7.6 +/- 0.1, respectively) with no change in [Ca(2+)](i). In addition, the K(Ca)-channel blocker iberiotoxin (10(-7) to 10(-6) M) resulted in increased tension and [Ca(2+)](i) in both adult and fetal MCA, although the K(ATP)-channel blocker glibenclamide (10(-7) to 3 x 10(-5) M) failed to do so. Of interest, administration of 10(-7) M iberiotoxin totally eliminated vascular contraction and increase in [Ca(2+)](i) seen in response to 10(-5) M ryanodine. In precontracted fetal cerebral arteries, activation of the K(ATP) and K(Ca) channels significantly decreased both tension and [Ca(2+)](i), suggesting that both K(+) channels play an important role in regulating L-type channel Ca(2+) flux and therefore vascular tone in these vessels. In the adult, K(ATP) and the K(Ca) channels also appear to play an important role in this regard; however, in the adult vessel, activation of these channels with resultant vasorelaxation can occur with no significant change in [Ca(2+)](i). These channels show differing responses to inhibition, e.g., K(Ca)-channel inhibition, resulting in increased tension and [Ca(2+)](i), whereas K(ATP)-channel inhibition showed no such effect. In addition, the K(Ca) channel appears to be coupled to the sarcoplasmic reticulum ryanodine receptor. Thus differences in plasma membrane K(+)-channel activity may account, in part, for the differences in the regulation of contractility of fetal and adult cerebral arteries.  相似文献   

17.
PTX (10(-8)M) induced a rapid increase followed by a gradual decrease in muscle tension in normal physiological salt solution (PSS), while it induced a slow increase in muscle tension in low-Na+ solution. These contractions were inhibited by Ca2+ channel blockers, verapamil and nicardipine. PTX rapidly increased tissue Na+ and decreased tissue K+ contents in normal PSS. In low-Na+ solution, PTX decreased tissue K+ content with a slower rate than that in normal PSS. PTX increased uptake of 45Ca2+ in normal as well as low-Na+ solutions with similar time course as the increase in muscle tension. However, 45Ca2+ uptake still remained high when the PTX-induced transient contraction ceased. These results suggest that PTX increases Ca2+ influx through voltage-dependent Ca2+ channels to cause contraction. After a prolonged exposure to PTX, however, muscle tension is uncoupled from Ca2+ influx.  相似文献   

18.
Glycerinated rabbit psoas muscle fibers containing native CPK, ATPase, and myokinase activities were used and isometric contraction and relaxation responses to either ADP or ATP + CP or to ATP alone in the presence and absence of P1, P5-di(adenosine-5'-pentaphosphate), a myokinase inhibitor, were compared. In previous (14) work it was shown that CP generated more efficient and faster contraction and relaxation of glycerinated muscle fibers than ATP. The present work deals with the role of myokinase in the differential response of fibers to CP and ATP. Inhibition of the myokinase activity of these fibers caused slight diminution of the rate of contraction at physiological concentrations of ATP. Uninhibited fibers were not able to reach maximum contraction, because the tension began to drop gradually even in the presence of Ca2+. Addition of Ap5A permitted maximum contraction and the ability to stay at the contracted state. In the case of CP + adenosine nucleotides (ATP or ADP), myokinase activity decreased the rate of tension development which was statistically significant after 5-7 sec of contraction. Thus, a higher tension was obtainable when myokinase was inhibited. At high concentration of adenine nucleotides (greater than 2 mM) and in the absence of Ap5A, not only the maximum tension never was reached, but a spontaneous drop in tension was observed before addition of EGTA, as was seen with ATP alone. Relaxation was faster and more complete in the presence of uninhibited myokinase activity except that the ADP was low (125 mM). These observations provide further evidence for a close functional interaction of these three enzymes in the mechanism of contraction and relaxation, giving further support to the notion of the creatine-phosphocreatine energy shuttle.  相似文献   

19.
The use of a microsomal preparation from skeletal muscle revealed that both Ca(2+) transport and Ca(2+)-dependent ATP hydrolysis linked to Sarco-Endoplasmic Reticulum Ca(2+)-ATPase are inhibited by epigallocatechin-3-gallate (EGCG). A half-maximal effect was achieved at approx. 12?μM. The presence of the galloyl group was essential for the inhibitory effect of the catechin. The relative inhibition of the Ca(2+)-ATPase activity decreased when the Ca(2+) concentration was raised but not when the ATP concentration was elevated. Data on the catalytic cycle indicated inhibition of maximal Ca(2+) binding and a decrease in Ca(2+) binding affinity when measured in the absence of ATP. Moreover, the addition of ATP to samples in the presence of EGCG and Ca(2+) led to an early increase in phosphoenzyme followed by a time-dependent decay that was faster when the drug concentration was raised. However, phosphorylation following the addition of ATP plus Ca(2+) led to a slow rate of phosphoenzyme accumulation that was also dependent on EGCG concentration. The results are consistent with retention of the transporter conformation in the Ca(2+)-free state, thus impeding Ca(2+) binding and therefore the subsequent steps when ATP is added to trigger the Ca(2+) transport process. Furthermore, phosphorylation by inorganic phosphate in the absence of Ca(2+) was partially inhibited by EGCG, suggesting alteration of the native Ca(2+)-free conformation at the catalytic site.  相似文献   

20.
The effect of chronic hypoxia (CH) for 14 days on Ca2+ signaling and contraction induced by agonists in the rat main pulmonary artery (MPA) was investigated. In MPA myocytes obtained from control (normoxic) rats, endothelin (ET)-1, angiotensin II (ANG II), and ATP induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) in 85-90% of cells, whereas they disappeared in myocytes from chronically hypoxic rats together with a decrease in the percentage of responding cells. However, both the amount of mobilized Ca2+ and the sources of Ca2+ implicated in the agonist-induced response were not changed. Analysis of the transient caffeine-induced [Ca2+]i response revealed that recovery of the resting [Ca2+]i value was delayed in myocytes from chronically hypoxic rats. The maximal contraction induced by ET-1 or ANG II in MPA rings from chronically hypoxic rats was decreased by 30% compared with control values. Moreover, the D-600- and thapsigargin-resistant component of contraction was decreased by 40% in chronically hypoxic rats. These data indicate that CH alters pulmonary arterial reactivity as a consequence of an effect on both Ca2+ signaling and Ca2+ sensitivity of the contractile apparatus. A Ca2+ reuptake mechanism appears as a CH-sensitive phenomenon that may account for the main effect of CH on Ca2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号