首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of agmatine to succinate by Klebsiella aerogenes occurs in five steps. The enzyme catalyzing the first step, agmatinase, is induced by agmatine. The enzymes catalyzing the second and third steps, putrescine aminotransferase and 4-aminobutyraldehyde dehydrogenase, are induced by putrescine and also by their product, 4-aminobutyrate. The enzymes catalyzing the fourth and fifth steps, 4-aminobutyrate aminotransferase and succinate semialdehyde dehydrogenase, are induced by 4-aminobutyrate. This compound also serves as gratuitous inducer of the catabolic acetylornithine aminotransferase. The formation of the enzymes responsible for agmatine degradation is regulated not only by induction, but also by catabolite repression and activation by glutamine synthetase.  相似文献   

2.
3.
The presence of certain rpsL (strA) mutations in a strain of Escherichia coli that cannot synthesize putrescine or spermidine because of deletions in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase, converts a partial requirement for polyamines for growth into an absolute requirement.  相似文献   

4.
Mutants defective in the conversion of arginine to putrescine were found by screening clones from mutagenized cultures for inability to produce urea during growth in arginine-supplemented media. Two partially blocked mutants were isolated; one was deficient in arginine decarboxylase and the other was deficient in agmatine ureohydrolase. As predicted from the pattern of putrescine synthesis in Escherichia coli, these mutants were conditionally putrescine-deficient. When grown in either minimal or ornithine-supplemented media, conditions which lead to preferential utilization of the ornithine to putrescine pathway, the mutants had normal intracellular polyamine levels. However, when the mutants were placed in arginine-supplemented media, the level of intracellular putrescine was lowered markedly. Under conditions where intracellular putrescine was 1% of normal, the doubling time of the mutants was increased approximately 10%. The putrescine-deficient mutants had wild-type morphology, normal levels of protein and ribonucleic acid (RNA), and stringent amino acid control of RNA synthesis.  相似文献   

5.
A mutant of Escherichia coli is described which is defective in the conversion of arginine to putrescine. The activity of the enzyme agmatine ureohydrolase is greatly reduced, whereas the activity of the other two enzymes of the pathway, the constitutive arginine decarboxylase and the inducible arginine decarboxylase, are within the normal range. The growth behavior of the mutant reflects the enzymatic block. It grows well in the absence of arginine, but only poorly in the presence of arginine. Under the former conditions, putrescine can be formed from ornithine as well as arginine, whereas under the latter conditions, because of feedback control, it can be formed only from arginine.  相似文献   

6.
Klebsiella aerogenes formed two N2-acetylornithine 5-aminotransferases (ACOAT) which were separable by diethylaminoethyl-cellulose chromatography. One ACOAT was repressed when the cells grew on arginine-containing medium, indicating its function in arginine biosynthesis. The second ACOAT was induced when arginine or ornithine was present in the medium as the sole source of carbon or nitrogen, suggesting its function in the catabolism of these compounds. The induced enzyme was purified almost to homogeneity. Its molecular weight is 59,000; it is a pyridoxal 5-phosphate-dependent enzyme and exhibits activity with N2-acetylornithine (Km = 1.1 mM) as well as with ornithine (Km = 5.4 mM). ACOAT did not catalyze the transamination of putrescine or 4-aminobutyrate. The best amino acceptor was 2-ketoglutarate (Km = 0.7 mM). ACOAT formation was subject to catabolite repression exerted by glucose when ammonia was present in excess. When the cells were deprived of nitrogen, ACOAT escaped from catabolite repression. This activation was mediated by glutamine synthetase as shown by the fact that mutants affected in the regulation or synthesis of glutamine synthetase were also affected in the control of ACOAT formation.  相似文献   

7.
The genome sequence of the hyperthermophilic methanogen Methanococcus jannaschii contains homologs of most genes required for spermidine polyamine biosynthesis. Yet genomes from neither this organism nor any other euryarchaeon have orthologs of the pyridoxal 5'-phosphate-dependent ornithine or arginine decarboxylase genes, required to produce putrescine. Instead, as shown here, these organisms have a new class of arginine decarboxylase (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that contains a reactive pyruvoyl group. Although this extremely thermostable enzyme has no significant sequence similarity to previously characterized proteins, conserved active site residues are similar to those of the pyruvoyl-dependent histidine decarboxylase enzyme, and its subunits form a similar (alphabeta)(3) complex. Homologs of PvlArgDC are found in several bacterial genomes, including those of Chlamydia spp., which have no agmatine ureohydrolase enzyme to convert agmatine (decarboxylated arginine) into putrescine. In these intracellular pathogens, PvlArgDC may function analogously to pyruvoyl-dependent histidine decarboxylase; the cells are proposed to import arginine and export agmatine, increasing the pH and affecting the host cell's metabolism. Phylogenetic analysis of Pvl- ArgDC proteins suggests that this gene has been recruited from the euryarchaeal polyamine biosynthetic pathway to function as a degradative enzyme in bacteria.  相似文献   

8.
K M Yao  W F Fong    S F Ng 《The Biochemical journal》1984,222(3):679-684
The putrescine-biosynthesis pathway in Tetrahymena thermophila was delineated by studying crude extracts prepared from exponentially growing cultures. A pyridoxal phosphate-stimulated ornithine decarboxylase activity competitively inhibited by putrescine was detected. CO2 was also liberated from L-arginine, but analyses by t.l.c. and enzyme studies suggested that the activity was not due to arginine decarboxylase, nor could enzyme activities converting agmatine into putrescine be detected. We conclude that the decarboxylation of L-ornithine is probably the only major route for putrescine biosynthesis in this organism during exponential growth.  相似文献   

9.
The participation of tyramine oxidase in the regulation of arylsulfatase synthesis in Klebsiella aerogenes was studied. Arylsulfatase was synthesized when this organism was grown with methionine or taurine as the sulfur source (nonrepressing conditions) and was repressed by inorganic sulfate or cysteine; this repression was relieved by tyramine and related compounds (derepressing conditions). Under nonrepressing conditions, arylsulfatase synthesis was not regulated by tyramine oxidase synthesis. However, derepression of arylsulfatase and induction of tyramine oxidase synthesis by tyramine were both antagonized by glucose and other carbohydrate compounds. The derepressed synthesis of arylsulfatase, like that of tyramine oxidase, was released from catabolite repression by use of tyramine as the sole source of nitrogen. A mutant strain that exhibits constitutive synthesis of glutamine synthetase and high levels of histidase when grown in glucose-ammonium medium was subject to the catabolite repression of both tyramine oxidase and arylsulfatase syntheses. Mutants in which repression of arylsulfatase could not be relieved by tyramine could not utilize tyramine as the sole source of nitrogen and were defective in the gene for tyramine oxidase.  相似文献   

10.
Agmatinase (agmatine ureohydrolase, EC 3.5.3.11) from Escherichia coli was inactivated by diethyl pyrocarbonate (DEPC) and illumination in the presence of Rose bengal. Protection against photoinactivation was afforded by the product putrescine, and the dissociation constant of the enzyme-protector complex (12 mM) was essentially equal to the K(i) value for this compound acting as a competitive inhibitor of agmatine hydrolysis. Upon mutation of His163 by phenylalanine, the agmatinase activity was reduced to 3-5% of wild-type activity, without any change in K(m) for agmatine or K(i) for putrescine inhibition. The mutant was insensitive to DEPC and dye-sensitized inactivations. We conclude that His163 plays an important role in the catalytic function of agmatinase, but it is not directly involved in substrate binding.  相似文献   

11.
Streptococcus faecalis ATCC 11700 uses agmatine as its sole energy source for growth. Agmatine deiminase and putrescine carbamoyltransferase are coinduced by growth on agmatine. Glucose and arginine were found to exert catabolite repression on the agmatine deiminase pathway. Four mutants unable to utilize agmatine as an energy source, isolated from the wild-type strain, exhibited three distinct phenotypes. Two of these strains showed essentially no agmatine deiminase, one mutant showed negligible activity of putrescine carbamoyltransferase, and one mutant was defective in both activities. Two carbamate kinases are present in S. faecalis, one belonging to the arginine deiminase pathway, the other being induced by growth on agmatine. These two enzymes have the same molecular weight, 82,000, and seem quite different in size from the kinases isolated from other streptococci.  相似文献   

12.
In Pseudomonas aeruginosa N-2-acetylornithine 5-aminotransferase (ACOAT), the fourth enzyme of arginine biosynthesis is induced about 15-fold by cultivating the organism on a medium with L-arginine as the sole carbon and nitrogen source. Synthesis of the enzyme is subject to catabolite repression and nitrogen source. Synthesis of the enzyme is subject to catabolite repression by a variety of carbon sources. ACOAT from strain PAO 1 was purified over 40-fold to electrophoretic homogeneity. A molecular weight of approximately 110,000 was obtained by thin-layer gel filtration. Electrophoresis in sodium dodecyl sulfate gels gave a single band corresponding to a molecular weight of 55,000. Purified ACOAT catalyzes the transamination of N-2-acetyl-L-ornithine as well as of L-ornithine with 2-oxoglutarate (Km values of 1.1, 10.0, and 0.7 mM, respectively). With N-2-acetyl-L-ornithine as amino donor, the pH-optimum of the enzymatic reaction is 8.5; with L-ornithine as amino donor, 9.5. The catalytic properties of ACOAT as well as the regulation of its synthesis indicate that in P. aeruginosa this enzyme functions in the biosynthesis as well as in the catabolism of L-arginine.  相似文献   

13.
Strains of Escherichia coli K12 have been constructed which do not contain any of the polyamines normally present in a wild type strain, namely, 1,4-diaminobutane (putrescine) and spermidine. This phenotype arises as a consequence of the assembly into these strains of deletion mutations in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). The polyamine-deficient strains grow indefinitely in the absence of polyamines but with a growth rate one-third of that found in the presence of polyamines. These strains can act as hosts for bacteriophages T4, T7, and f2, although the latter phage is poorly adsorbed; they can also maintain F' factors, ColE1 and P1 plasmids, and lysogeny by bacteriophage lambda. In contrast, the production of bacteriophage lambda in the absence of polyamines is strikingly decreased (greater than 99%) either after infection of a nonlysogen or after induction of a lysogen. A polyamine-deficient Hfr strain can transfer its chromosome to a recipient at a normal rate, but the number of recombinants observed in a cross is decreased approximately 300-fold. No such effect is observed when only the F- recipient strain in a cross is polyamine deficient.  相似文献   

14.
The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium, but not with ureidoglycolate. Tricarboxylic acid cycle intermediates exerted catabolite repression of the synthesis of the three enzymes, while pyruvate and glucose caused less repression. The operation of a nitrogen control mechanism in the regulation of the allantoin-degrading enzymes could be demonstrated with glutamine synthetase-negative mutants, which showed elevated synthesis and escape from catabolite repression when growth was limited for glutamine.  相似文献   

15.
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.  相似文献   

16.
The induced synthesis of d-serine deaminase in Escherichia coli is subject to three catabolic effects: inhibition on inducer uptake, transient repression, and catabolite repression. Inhibition on d-serine uptake is not significant at the d-serine concentration normally used for induction. Transient repression and catabolite repression of d-serine deaminase synthesis are abolished by mutations in dsdCy, which appears to be an operator locus. The decline in the rate of constitutive synthesis observed in dsdCx mutants growing with glycerol as carbon source at temperatures above 37 C is due to catabolite repression. The low level of constitutivity at 37 C and the partial cis dominance of dsdCx mutants are not artifacts of catabolite repression. It is suggested that a product of one of the genes of the dsd operon may regulate the expression of the operon.  相似文献   

17.
Intracellular concentration of cAMP regulates the synthesis of enzymes sensitive to catabolite repression. The relationship between the single and multiple induction of beta-galactosidase (EC 3.2.1.23), L-tryptophanase (EC 4.1.99.1), D-serine deaminase (EC 4.2.1.14), L-asparaginase (EC 3.5.1.1) and L-malate dehydrogenase (EC 1.1.1.37) was studied and the effect of cAMP level on the induction in Escherichia coli Crookes (ATCC 8739) was investigated. A varying degree of catabolite repression was observed during induction of individual enzymes induced separately on different energy sources. The synthesis of l-tryptophanase was most sensitive, whereas l-asparaginase was not influenced at all. Exogenous cAMP was found to overcome partially the catabolite repression of beta-galactosidase and D-serine deaminase, both during single induction. The synthesis of l-malate dehydrogenase was negatively influenced by the multiple induction even in the presence of cAMP; on the other hand, the synthesis of l-tryptophanase was stimulated, independently of the level of the exogenous cAMP. Similarly, the activity of L-asparaginase slightly but significantly increased during the multiple induction of all five enzymes; here too the activity increase did not depend on exogenous cAMP.  相似文献   

18.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

19.
20.
Catabolite inactivation of fructose-1,6-bisphosphatase, isocitrate lyase, phosphoenolpruvate carboxykinase and malate dehydrogenase in intact cells could be prevented by phenylmethylsulfonyl fluoride added 40 min prior to the addition of glucose. Protein synthesis, fermentative and respiratory activity and catabolite repression were not affected. Elimination of catabolite inactivation by the addition of PMSF revealed that catabolite repression started at different times for different enzyme.Abbreviation PMSF phenylmethylsulfonyl fluoride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号