首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immunization of mice with nonviable Listeria monocytogenes generates an insufficient CD8(+) T cell response and consequently only limited protection against subsequent L. monocytogenes infection. We have recently demonstrated that depletion of regulatory CD4(+) T cells during immunization significantly enhances CD8(+) T cell responses. In the present study, we determined the impact of CD4(+) T cell depletion on the CD8(+) T cell response against heat-killed LISTERIA: Treatment of mice with anti-CD4 mAb during boost immunization with heat-killed Listeria significantly increased numbers of Listeria-specific CD8(+) T cells and improved protection against subsequent infection with L. monocytogenes. During challenge infection, numbers of Listeria-specific CD8(+) T cells were enhanced, and these cells expressed effector functions in terms of IFN-gamma production. In summary, we demonstrate that combining nonviable L. monocytogenes vaccination and CD4(+) T cell depletion improves generation of long-lasting and functional Listeria-specific CD8(+) memory T cells.  相似文献   

2.
Dendritic cells (DCs) are potent APCs for naive CD8(+) T cells and are being investigated as vaccine delivery vehicles. In this study, we examine the CD8(+) T cell response to defined peptides from Listeria monocytogenes (LM), lymphocytic choriomeningitis virus, and murine CMV coated singly and in combination onto mature bone marrow-derived DCs (BMDCs). We show that immunization of mice with 2 x 10(5) mature BMDCs coated with multiple MHC class I peptides generates a significant Ag-specific CD8(+) T cell response in both the spleen and nonlymphoid organs. This immunization resulted in a peptide-specific hierarchy in the magnitude of CD8(+) T cell priming and noncoordinate kinetics in response to different peptide epitopes. Kinetics were not exclusively due to specific characteristics of the MHC class I molecule, and were not altered in an Ag-independent manner by concurrent LM infection. Mice immunized with listeriolysin O 91-99-coated BMDCs are protected against high dose challenge with virulent LM. This protection was enhanced by diversifying the memory CD8(+) T cell compartment, even in the absence of a large increase in Ag-specific CD8(+) memory T cells.  相似文献   

3.
The inducible costimulator protein (ICOS) was recently identified as a costimulatory molecule for T cells. Here we analyze the role of ICOS for the acquired immune response of mice against the intracellular bacterium Listeria monocytogenes. During oral L. monocytogenes infection, low levels of ICOS expression were detected by extracellular and intracellular Ab staining of Listeria-specific CD4(+) and CD8(+) T cells. Blocking of ICOS signaling with a soluble ICOS-Ig fusion protein markedly impaired the Listeria-specific T cell responses. Compared with control mice, the ICOS-Ig treated mice generated significantly reduced numbers of Listeria-specific CD8(+) T cells in spleen and liver, as determined by tetramer and intracellular cytokine staining. In contrast, the specific CD8(+) T cell response in the intestinal mucosa did not appear to be impaired by the ICOS-Ig treatment. Analysis of the CD4(+) T cell response revealed that ICOS-Ig treatment also affected the specific CD4(+) T cell response. When restimulated with listerial Ag in vitro, reduced numbers of CD4(+) T cells from infected and ICOS-Ig-treated mice responded with IFN-gamma production. The impaired acquired immune response in ICOS-Ig treated mice was accompanied by their increased susceptibility to L. monocytogenes infection. ICOS-Ig treatment drastically enhanced bacterial titers, and a large fraction of mice succumbed to the otherwise sublethal dose of infection. Thus, ICOS costimulation is crucial for protective immunity against the intracellular bacterium L. monocytogenes.  相似文献   

4.
The induction of mucosal immunity is crucial in controlling viral replication during HIV infection. In this study we compare the ability of a recombinant Listeria monocytogenes that expresses and secretes the HIV Ag Gag to induce CD8(+) T cells against this Ag in the spleen, mesenteric lymph nodes, and Peyer's patches and the ability to provide effector Gag-specific CD8(+) T cells to the lamina propria after i.v., oral, or rectal administration of the vaccine. The levels of Ag-specific CD8(+)-activated T cells were measured ex vivo using intracellular cytokine staining for IFN-gamma and H-2K(d) Gag peptide tetramer staining. We found that all routes of immunization induced Gag-specific CD8(+) T cells in the spleen. After secondary infection, we observed substantial increases in splenic levels of CD8(+) T cells, and levels of Gag-specific cells were similar to those against listeriolysin O, the immunodominant Ag of L. monocytogenes. Both primary and secondary oral immunization resulted in abundant Gag-specific CD8(+)-activated T cells in the lamina propria that constituted approximately 35% of the CD8 compartment. However, significant levels of Gag and listeriolysin O-specific CD8(+) T cells were observed in mucosal lymphoid tissue only after two immunizations, perhaps because they had already entered the lamina propria compartment after a single immunization. In the context of HIV, a mucosally administered vaccine seems best calculated to prompt an immune response that is capable of preventing infection. The data presented in this report demonstrate that mucosally administered Listeria can prompt such a response and that booster doses can maintain this response.  相似文献   

5.
To elucidate potential roles of IL-15 in the maintenance of memory CD8+ T cells, we followed the fate of Ag-specific CD8+ T cells directly visualized with MHC class I tetramers coupled with listeriolysin O (LLO)(91-99) in IL-15 transgenic (Tg) mice after Listeria monocytogenes infection. The numbers of LLO(91-99)-positive memory CD8+ T cells were significantly higher at 3 and 6 wk after infection than those in non-Tg mice. The LLO(91-99)-positive CD8+ T cells produced IFN-gamma in response to LLO(91-99), and an adoptive transfer of CD8+ T cells from IL-15 Tg mice infected with L. monocytogenes conferred a higher level of resistance against L. monocytogenes in normal mice. The CD44+ CD8+ T cells from infected IL-15 Tg mice expressed the higher level of Bcl-2. Transferred CD44+ CD8+ T cells divided more vigorously in naive IL-15 Tg mice than in non-Tg mice. These results suggest that IL-15 plays an important role in long-term maintenance of Ag-specific memory CD8+ T cells following microbial exposure via promotion of cell survival and homeostatic proliferation.  相似文献   

6.
H2-M3-restricted CD8+ T cells provide early protection against bacterial infections. In this study, we demonstrate that activated H2-M3-restricted T cells provide early signals for efficient CD4+ T cell priming. C57BL/6 mice immunized with dendritic cells coated with the MHC class II-restricted listeriolysin O peptide LLO(190-201) (LLO) generated CD4+ T cells capable of responding to Listeria monocytogenes (LM) infection. Inclusion of a H2-M3-restricted formylated peptide fMIGWII (fMIG), but not MHC class Ia-restricted peptides, during immunization with LLO significantly increased IFN-gamma-producing CD4+ T cell numbers, which was associated with increased protection against LM infection. Studies with a CD4+ T cell-depleting mAb indicate that the reduction in bacterial load in fMIG plus LLO immunized mice is likely due to augmented numbers of LLO-specific CD4+ T cells, generated with the help of H2-M3-restricted CD8+ T cells. We also found that augmentation of LLO-specific CD4+ T lymphocytes with H2-M3-restricted T cells requires presentation of LLO and fMIG by the same dendritic cells. Interestingly, the augmented CD4+ T cell response generated with fMIG also increased primary LM-specific responses by MHC class Ia-restricted CD8 T cells. Coimmunization with LLO and fMIG also increases the number of memory Ag-specific CD4+ T cells. We also demonstrate that CD8 T cells restricted to another MHC class Ib molecule, Qa-1, whose human equivalent is HLA-E, are also able to enhance Ag-specific CD4+ T cell responses. These results reveal a novel function for H2-M3- and Qa-1-restricted T cells; provision of help to CD4+ Th cells during the primary response.  相似文献   

7.
IFN-gamma is critical for innate immunity against Listeria monocytogenes (L. monocytogenes), and it has long been thought that NK cells are the major source of IFN-gamma during the first few days of infection. However, it was recently shown that a significant number of CD44highCD8+ T cells also secrete IFN-gamma in an Ag-independent fashion within 16 h of infection with L. monocytogenes. In this report, we showed that infection with other intracellular pathogens did not trigger this early IFN-gamma response and that cytosolic localization of Listeria was required to induce rapid IFN-gamma production by CD44highCD8+ T cells. Infection of C57BL/6 mice with an Escherichia coli strain expressing listeriolysin O (LLO), a pore-forming toxin from L. monocytogenes, also resulted in rapid IFN-gamma expression by CD8+ T cells. These results suggest that LLO expression is essential for induction of the early IFN-gamma response, although it is not yet clear whether LLO plays a direct role in triggering a signal cascade that leads to cytokine production or whether it is required simply to release other bacterial product(s) into the host cell cytosol. Interestingly, mouse strains that displayed a rapid CD8+ T cell IFN-gamma response (C57BL/6, 129, and NZB) all had lower bacterial burdens in the liver 3 days postinfection compared with mouse strains that did not have an early CD8+ T cell IFN-gamma response (BALB/c, A/J, and SJL). These data suggest that participation of memory CD8+ T cells in the early immune response against L. monocytogenes correlates with innate host resistance to infection.  相似文献   

8.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

9.
Ag-specific Th1 and Th2 cytokine-producing CD4 T cells were quantitated in secondary lymphoid and tertiary tissues following oral Listeria monocytogenes infection. Although the response to Listeria was previously believed to be predominantly Th1 like, CD4 T cells producing IL-4 or IL-5 comprised a substantial proportion of the overall primary and memory response. The frequency of IFN-gamma-, IL-4-, or IL-5-producing primary effector or memory CD4 T cells was significantly higher in lung, liver, and intestinal lamina propria (LP) as compared with spleen and lymph node. However, maximum numbers of IL-4- and IL-5-producing cells were detected in the LP several days after the peak of the Th1 response, and IL-5 production was skewed toward the mucosal tissues. Remarkably, the recall response resulted in sustained Th1 and Th2 responses in tertiary, but not lymphoid tissues and long-term retention of Th1 and Th2 memory cells in equal proportions in the LP. Finally, CD40 ligand was essential for induction of IFN-gamma in the spleen and LP, but not in the liver and lung, while the IL-4 response required CD40 ligand only in the spleen. Therefore, the rules governing the effector phenotype, and the overall magnitude of the CD4 response, are regulated at the level of individual tissues.  相似文献   

10.
Infection of mice with the intracellular bacterium Listeria monocytogenes results in a strong CD8(+) T cell response that is critical for efficient control of infection. We used CD28-deficient mice to characterize the function of CD28 during Listeria infection, with a main emphasis on Listeria-specific CD8(+) T cells. Frequencies and effector functions of these T cells were determined using MHC class I tetramers, single cell IFN-gamma production and Listeria-specific cytotoxicity. During primary Listeria infection of CD28(-/-) mice we observed significantly reduced numbers of Listeria-specific CD8(+) T cells and only marginal levels of specific IFN-gamma production and cytotoxicity. Although frequencies were also reduced in CD28(-/-) mice during secondary response, we detected a considerable population of Listeria-specific CD8(+) T cells in these mice. In parallel, IFN-gamma production and cytotoxicity were observed, revealing that Listeria-specific CD8(+) T cells in CD28(-/-) mice expressed normal effector functions. Consistent with their impaired CD8(+) T cell activation, CD28(-/-) mice suffered from exacerbated listeriosis both after primary and secondary infection. These results demonstrate participation of CD28 signaling in the generation and expansion of Ag-specific CD8(+) T cells in listeriosis. However, Ag-specific CD8(+) T cells generated in the absence of CD28 differentiated into normal effector and memory T cells.  相似文献   

11.
Infection of mice with Listeria monocytogenes induces a strong CD8+ T cell response, which is critical for the control of bacteria and for protection against re-infection. We analyzed the CD8+ T cell response in different intestinal tissues following oral and intravenous (i.v.) L. monocytogenes infection. After oral infection, bacterial titers in small intestine and large intestine, and the listeria-specific CD8+ T cell response in the mucosa of both parts of the intestine, were highly correlated. Oral infection of CD28-deficient mice revealed that this response was strictly dependent on CD28 costimulation. Significant listeria-specific CD8+ T cell responses also occurred in all intestinal tissues analyzed after i.v. infection or after DNA vaccination, indicating that the accumulation of listeria-specific CD8+ T cells in these tissues only partially depends on local antigen presentation and inflammation.  相似文献   

12.
The intestinal mucosal CD8 T cell response to infection with Listeria monocytogenes was measured using MHC class I tetramers and was compared with the response in peripheral blood, secondary lymphoid tissue, and liver. To assess the vaccination potential of Listeria and to analyze responses in C57BL/6 mouse strains, a recombinant Listeria expressing OVA (rLM-ova) was generated. The response peaked at 9 days postinfection with a much larger fraction of the intestinal mucosa and liver CD8 T cell pool OVA specific, as compared with the spleen. However, these differences were not linked to bacterial titers in each site. The higher responses in lamina propria and liver resulted in a larger CD8 memory population in these tissues. Furthermore, the level of memory induced was dependent on infectious dose and inversely correlated with the magnitude of the recall response after oral challenge. Recall responses in the tissues were most robust in the lamina propria and liver, and reactivated Ag-specific T cells produced IFN-gamma. Infection of CD40- or MHC class II-deficient mice induced poor CD8 T cell responses in the intestinal mucosa, but only partially reduced responses in the spleen and liver. Overall, the results point to novel pathways of tissue-specific regulation of primary and memory antimicrobial CD8 T cell responses.  相似文献   

13.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

14.
Following infection with respiratory syncytial virus (RSV), reinfection in healthy individuals is common and presumably due to ineffective memory T cell responses. In peripheral blood of healthy adults, a higher CD4(+)/CD8(+) memory T cell ratio was observed compared with the ratio of virus-specific effector CD4(+)/CD8(+) T cells that we had found in earlier work during primary RSV infections. In mice, we show that an enhanced ratio of RSV-specific neutralizing to nonneutralizing Abs profoundly enhanced the CD4(+) T cell response during RSV infection. Moreover, FcγRs and complement factor C1q contributed to this Ab-mediated enhancement. Therefore, the increase in CD4(+) memory T cell response likely occurs through enhanced endosomal Ag processing dependent on FcγRs. The resulting shift in memory T cell response was likely amplified by suppressed T cell proliferation caused by RSV infection of APCs, a route important for Ag presentation via MHC class I molecules leading to CD8(+) T cell activation. Decreasing memory CD8(+) T cell numbers could explain the inadequate immunity during repeated RSV infections. Understanding this interplay of Ab-mediated CD4(+) memory T cell response enhancement and infection mediated CD8(+) memory T cell suppression is likely critical for development of effective RSV vaccines.  相似文献   

15.
The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8(+) memory cells, and most of these had an effector memory (CD95(+) CD28(-)) phenotype. CD4(+) T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95(+)) CCR5(+) cells, suggesting they were potential targets for viral infection. After SIV infection, CD4(+) T cells were markedly reduced, and increased proliferation and absolute numbers of CD8(+) T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8(+) T cells and possibly a source for early CD4(+) T cell infection and destruction.  相似文献   

16.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

17.
Microbial infections induce the replacement of constitutive proteasomes by immunoproteasomes (I-proteasomes). I-proteasomes support efficient generation of MHC class I epitopes and influence immunodominance hierarchies of CD8(+) T cells. Recently, the function of I-proteasomes in antimicrobial responses was challenged by showing that the lack of I-proteasomes has no effect on induction and function of lymphocytic choriomeningitis virus-specific CD8(+) T cells. Here, we show that infection with Listeria monocytogenes rapidly induces I-proteasomes in nonlymphoid tissues, which leads to enhanced generation of protection relevant CD8(+) T cell epitopes. I-proteasome-deficient mice (beta5i(-/-) mice) exhibited normal frequencies of L. monocytogenes-specific CD8(+) T cells. However, clearance of L. monocytogenes in liver but not spleen was significantly impaired in I-proteasome-deficient mice. In summary, our studies demonstrate that induction of I-proteasomes is required for CD8(+) T cell-mediated elimination of L. monocytogenes from nonlymphoid but not lymphoid tissues.  相似文献   

18.
The contact of T cells to cross-reactive antigenic determinants expressed by nonpathogenic environmental micro-organisms may contribute to the induction or maintenance of T cell memory. This hypothesis was evaluated in the model of murine Listeria monocytogenes infection. The influence of nonpathogenic L. innocua on the L. monocytogenes p60-specific T cell response was analyzed. We show that some CD4 T cell clones raised against purified p60 from L. monocytogenes cross-react with p60 purified from L. innocua. The L. monocytogenes p60-specific CD4 T cell clone 1A recognized the corresponding L. innocua p60 peptide QAAKPAPAPSTN, which differs only in the first amino acid residue. In vitro experiments revealed that after L. monocytogenes infection of APCs, MHC class I-restricted presentation of p60 occurs, while MHC class II-restricted p60 presentation is inhibited. L. innocua-infected cells presented p60 more weakly but equally well in the context of both MHC class I and MHC class II. In contrast to these in vitro experiments the infection of mice with L. monocytogenes induced a strong p60-specific CD4 and CD8 T cell response, while L. innocua infection failed to induce p60-specific T cells. L. innocua booster infection, however, expanded p60-specific memory T cells induced by previous L. monocytogenes infection. In conclusion, these findings suggest that infection with a frequently occurring environmental bacterium such as L. innocua, which is nonpathogenic and not adapted to intracellular replication, can contribute to the maintenance of memory T cells specific for a related intracellular pathogen.  相似文献   

19.
A strong CD4(+) T cell response has been correlated with better control of HIV infection. However, the effect of HIV on the maintenance of Ag-specific memory CD4(+) T cells is not fully understood. We characterized the function and phenotype of memory CD4(+) T cells generated by mumps and influenza A or B viruses in HIV-infected individuals receiving highly active antiretroviral therapy (n = 21), HIV-infected long-term nonprogressors (n = 10), and HIV-seronegative volunteers (n = 10). We observed significantly decreased proliferation of the Ag-specific central memory CD4(+) T cell population (CD28(+)/CCR7(+)/CD45RA(-)) in the antiretroviral treated HIV-infected individuals compared with the seronegative controls. Restored CD4(+) T cell count and decreased HIV viral load while on highly active antiretroviral therapy did not result in increased proliferation, whereas nadir CD4(+) T cell count predicted the presence of Ag-specific proliferation. Our results indicate that HIV infection leads to impaired maintenance of virus-induced or vaccine-generated central memory CD4(+) T cells that is not restored by HAART.  相似文献   

20.
IFN-gamma plays a critical role in the CD8(+) T cell response to infection, but when and if this cytokine directly signals CD8(+) T cells during an immune response is unknown. We show that naive Ag-specific CD8(+) T cells receive IFN-gamma signals within 12 h after in vivo infection with Listeria monocytogenes and then become unresponsive to IFN-gamma throughout the ensuing Ag-driven expansion phase. Ag-specific CD8(+) T cells regain partial IFN-gamma responsiveness throughout the contraction phase, whereas the memory pool exhibits uniform, but reduced, responsiveness that is also modulated during the secondary response. The responsiveness of Ag-specific CD8(+) T cells to IFN-gamma correlated with modulation in the expression of IFN-gammaR2, but not with IFN-gammaR1 or suppressor of cytokine signaling-1. This dynamic regulation suggests that early IFN-gamma signals participate in regulation of the primary CD8(+) T cell response program, but that evading or minimizing IFN-gamma signals during expansion and the memory phase may contribute to appropriate regulation of the CD8(+) T cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号