首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure.  相似文献   

2.
It is generally believed that gastric emptying of solids is regulated by a coordinated motor pattern between the antrum and pylorus. We studied the role of the vagus nerve in mediating postprandial coordination between the antrum and pylorus. Force transducers were implanted on the serosal surface of the body, antrum, pylorus, and duodenum in seven dogs. Dogs were given either a solid or a liquid meal, and gastroduodenal motility was recorded over 10 h. Gastric emptying was evaluated with radiopaque markers mixed with a solid meal. Dogs were treated with hexamethonium, N(G)-nitro-l-arginine methyl ester (l-NAME), or transient vagal nerve blockade by cooling. A postprandial motility pattern showed three distinct phases: early, intermediate, and late. In the late phase, profound pyloric relaxations predominantly synchronized with giant antral contractions that were defined as postprandial antropyloric coordination. A gastric emptying study revealed that the time at which gastric contents entered into the duodenum occurred concomitantly with antropyloric coordination. Treatment by vagal blockade or hexamethonium significantly reduced postprandial antral contractions and pyloric relaxations of the late phase. l-NAME changed pyloric motor patterns from relaxation dominant to contraction dominant. Solid gastric emptying was significantly attenuated by treatment with hexamethonium, l-NAME, and vagal blockade. Postprandial antropyloric coordination was not seen after feeding a liquid meal. It is concluded that postprandial antropyloric coordination plays an important role to regulate gastric emptying of a solid food. Postprandial antropyloric coordination is regulated by the vagus nerve and nitrergic neurons in conscious dogs.  相似文献   

3.
Endogenous ghrelin causes interdigestive contractions of the stomach in rats. In contrast, previous studies showed that 5-HT(3) and 5-HT(4) receptors were involved in regulating intestinal interdigestive contractions. We studied the possible role of endogenous ghrelin and 5-HT regulating interdigestive gastrointestinal (GI) contractions in rats. Four strain gauge transducers were implanted on the antrum, duodenum, and proximal and distal jejunum. After an overnight fast, GI contractions were recorded in freely moving conscious rats and ghrelin receptor antagonists [(d-lys3)GHRP6; 1 micromol/kg], 5-HT(3) antagonists (Ondansetron; 0.5 mg/kg) and 5-HT(4) antagonists (GR 125,487; 1 mg/kg) were administered (bolus iv). To evaluate the relationship between the luminal concentrations of 5-HT and phase III-like contractions of the duodenum, duodenal juice was collected via the intraduodenal catheter. 5-HT content of the duodenal juice was measured by HPLC. (d-lys3)GHRP6 significantly attenuated the occurrence and amplitude of phase III-like contractions of the antrum, but not the duodenum and jejunum. 5-HT(4) antagonists significantly reduced spontaneous phase III-like contractions of the jejunum, without affecting those of the antrum and duodenum. In contrast, 5-HT(3) antagonists did not affect phase III-like contractions in GI tract. Luminal concentration of 5-HT at the phase III-like contraction (36.0 +/- 13.3 ng/ml, n = 9) was significantly higher than that at the phase I-like contractions of the duodenum (4.9 +/- 1.6 ng/ml, n = 9, P < 0.05). It is suggested that released ghrelin from the gastric mucosa mediates gastric phase III-like contractions, whereas 5-HT released from enterochromaffin cells of the duodenal mucosa mediates intestinal phase III-like contractions via 5-HT(4) receptors.  相似文献   

4.
Regulation of gastric emptying   总被引:4,自引:0,他引:4  
Studies carried out in the years since William Beaumont's direct observations of gastric motility have provided increased understanding of the physiological roles of the stomach and of the mechanisms for the regulation of gastric motility. Tonic contractions of the proximal stomach are of primary importance for transfer of liquids from the stomach to the duodenum. Peristaltic contractions of the distal stomach are of primary importance for reducing the size of solid food particles and for transfer of solids to the duodenum. Because gastric emptying requires a net antral-duodenal pressure gradient, contractions of the duodenum also influence the rate of gastric emptying. Gastrointestinal hormones, including gastrin, cholecystokinin, secretin, somatostatin, and others, are released by contact of chyme with the intestinal mucosa, and affect contractions of the proximal stomach, distal stomach, and duodenum. Neural reflexes that arise from the stomach act through autonomic motor nerves to allow regulation by the central nervous system of gastric motility. gamma-Aminobutyric acid, opioids, and bombesin may serve as central neurochemical regulators of gastric motility.  相似文献   

5.
The relative contributions to gastric emptying from common cavity antroduodenal pressure difference ("pressure pump") vs. propagating high-pressure waves in the distal antrum ("peristaltic pump") were analyzed in humans by high-resolution manometry concurrently with time-resolved three-dimensional magnetic resonance imaging during intraduodenal nutrient infusion at 2 kcal/min. Gastric volume, space-time pressure, and contraction wave histories in the antropyloroduodenal region were measured in seven healthy subjects. The subjects fell into two distinct groups with an order of magnitude difference in levels of antral pressure activity. However, there was no significant difference in average rate of gastric emptying between the two groups. Antral pressure history was separated into "propagating high-pressure events" (HPE), "nonpropagating HPEs," and "quiescent periods." Quiescent periods dominated, and average pressure during quiescent periods remained unchanged with decreasing gastric volume, suggesting that common cavity pressure levels were maintained by increasing wall muscle tone with decreasing volume. When propagating HPEs moved to within 2-3 cm of the pylorus, pyloric resistance was found statistically to increase with decreasing distance between peristaltic waves and the pylorus. We conclude that transpyloric flow tends to be blocked when antral contraction waves are within a "zone of influence" proximal to the pylorus, suggesting physiological coordination between pyloric and antral contractile activity. We further conclude that gastric emptying of nutrient liquids is primarily through the "pressure pump" mechanism controlled by pyloric opening during periods of relative quiescence in antral contractile wave activity.  相似文献   

6.
Female brain is more sensitive to the acute exposure of ethanol. This study aimed to investigate the sexual difference of the ethanol-induced inhibition of gastrointestinal motility. Wistar rats were fasted and allowed drinking water only 12 - 18 h before the experiments. In the in vivo experiments, by using an oral radiochromium motility marker, the liquid gastric emptying and intestinal transit were [corrected] measured 30 min after ethanol treatment. In the in vitro study, strips of stomach and duodenum smooth muscle were suspended in organ baths containing Krebs solution, and their isometric contractions were also examined. Systemic administration of ethanol (2 g/kg, i.p.) significantly inhibited the gastric emptying and intestinal transit, and the effect on female rats turned out to be greater than that on the male rats (P < 0.05). In an in vitro study, ethanol (0.38 x 10(-3) M - 1.34 x 10(-3) M) inhibited the motility of gastric antrum and duodenum in rats of both sexes, but there was no sexual difference in the inhibitory effect of ethanol on muscle strips. We concluded that sexual difference of the ethanol-induced inhibition of gastrointestinal motility was not resulted from the smooth muscle itself.  相似文献   

7.
The aim of the study was to clarify whether 5-hydroxytryptophan (5-HTP) stimulates the postprandial motor pattern of the duodenum in a similar way as that of the adjacent jejunal segment in dogs. Computerized analysis of motor patterns recorded by closely spaced strain gauges focused on the temporal and spatial distribution of the contractions. Results indicate that 5-HTP increased the incidence and the length of the spread of contraction waves after both an acaloric and a nutrient meal in the duodenum as well as in the adjacent jejunal segment. Effects were more pronounced after the nutrient than after the acaloric meal. After the nutrient meal, but not after the acaloric meal, 5-HTP additionally enhanced the number of both duodenal and jejunal contractions per minute and increased the force of duodenal contractions. The acaloric meal induced significant differences in the motor patterns between the duodenum and the adjacent jejunum. 5-HTP abolished these differences owing to a relatively stronger stimulation of duodenal motility. 5-HTP did not affect gastric emptying of both meals. We conclude (i) that 5-HTP is a potent stimulator of propagated contractions both in the duodenum and the adjacent jejunal segment and (ii) that intestinal motor patterns can be regulated independently of gastric emptying.  相似文献   

8.
It has been shown that centrally administered neuropeptide Y (NPY) delays gastric emptying. To determine the receptor subtypes of NPY mediating the inhibitory effects on gastric emptying, effects of intracerebroventricular injection of NPY, [Leu31,Pro34]NPY (a Y1 agonist) and NPY-(3-36) (a Y2 agonist) on solid gastric emptying and postprandial antropyloric motility were studied in conscious rats. Intracerebroventricular injection of NPY and NPY-(3-36), but not [Leu31,Pro34] NPY, delayed solid gastric emptying in a dose-dependent manner (0.03-3 nmol). After the feeding (40 min), contractions with low frequency and high amplitude of the antrum were frequently observed, and the peak contraction of the antrum occurred most often 3-6 s before the peak contraction of the pylorus. Intracerebroventricular injection of NPY and NPY-(3-36) (3 nmol), but not [Leu31,Pro34]NPY, significantly reduced antral contractions and the number of antropyloric coordination events. It is suggested that centrally administered NPY impairs postprandial antral contractions and antropyloric coordination via Y2 receptors, resulting in delayed gastric emptying.  相似文献   

9.
Understanding of the control mechanisms underlying gastric motor function is still limited. The aim of the present study was to evaluate antral pressure-geometry relationships during gastric emptying slowed by intraduodenal nutrient infusion and enhanced by erythromycin. In seven healthy subjects, antral contractile activity was assessed by combined dynamic magnetic resonance imaging and antroduodenal high-resolution manometry. After intragastric administration of a 20% glucose solution (750 ml), gastric motility and emptying were recorded during intraduodenal nutrient infusion alone and, subsequently, combined with intravenous erythromycin. Before erythromycin, contraction waves were antegrade (propagation speed: 2.7 +/- 1.7 mm/s; lumen occlusion: 47 +/- 14%). Eighty-two percent (51/62) of contraction waves were detected manometrically. Fifty-four percent of contractile events (254/473) were associated with a detectable pressure event. Pressure and the degree of lumen occlusion were only weakly correlated (r(2) = 0.02; P = 0.026). After erythromycin, episodes of strong antroduodenal contractions were observed. In conclusion, antral contractions alone do not reliably predict gastric emptying. Erythromycin induces strong antroduodenal contractions not necessarily associated with fast emptying. Finally, manometry reliably detects ~80% of contraction waves, but conclusions from manometry regarding actual contractile activity must be made with care.  相似文献   

10.
Central corticotropin-releasing factor (CRF) plays an important role in mediating restraint stress-induced delayed gastric emptying. However, it is unclear how restraint stress modulates gastric motility to delay gastric emptying. Inasmuch as solid gastric emptying is regulated via antropyloric coordination, we hypothesized that restraint stress impairs antropyloric coordination, resulting in delayed solid gastric emptying in conscious rats. Two strain gauge transducers were sutured onto the serosal surface of the antrum and pylorus, and postprandial gastric motility was monitored before, during, and after restraint stress. Antropyloric coordination, defined as a propagated single contraction from the antrum to the pylorus within 10 s, was followed by > or = 20 s of quiescence. Restraint stress enhanced postprandial gastric motility in the antrum and pylorus to 140 +/- 9% and 134 +/- 9% of basal, respectively (n = 6). The number of episodes of antropyloric coordination before restraint stress, 2.4 +/- 0.4/10 min, was significantly reduced to 0.6 +/- 0.3/10 min by restraint stress. Intracisternal injection of the CRF type 2 receptor antagonist astressin 2B (60 microg) or guanethidine partially restored restraint stress-induced impairment of antropyloric coordination (1.6 +/- 0.3/10 min, n = 6). The restraint stress-induced augmentation of antral and pyloric contractions was increased by astressin 2B and guanethidine but abolished by atropine, hexamethonium, and vagotomy. Restraint stress enhanced postprandial gastric motility via a vagal cholinergic pathway. Restraint stress-induced delay of solid gastric emptying is due to impairment of antropyloric coordination. Restraint stress-induced impairment of antropyloric coordination might be mediated via a central CRF pathway.  相似文献   

11.
The frequency and propagation velocity of distension-induced peristaltic contractions in the antrum and duodenum are distinctly different and depend on activation of intrinsic excitatory motoneurons as well as pacemaker cells, the interstitial cells of Cajal associated with Auerbach's plexus (ICC-AP). Because ICC are critical for coordination of motor activities along the long axis of many regions in the gut, the role of ICC in antroduodenal coordination was investigated. We used immunohistochemistry, electron microscopy, simultaneous multiple electrical recordings in vitro, and videofluoroscopy in vivo in mice and rats. A strongly reduced number of ICC-AP with loss of network characteristics was observed in a 4-mm area in the rat and a 1-mm area in the mouse pyloric region. The pyloric region showed a slow wave-free gap of 4.1 mm in rats and 1.3 mm in mice. Between antrum and duodenum, there was no interaction of electrical activities and in the absence of gastric emptying, there was no coordination of motor activities. When the pyloric sphincter opened, 2.4 s before the front of the antral wave reached the pylorus, the duodenum distended after receiving gastric content and aboral duodenal peristalsis was initiated, often disrupting other motor patterns. The absence of ICC-AP and slow wave activity in the pyloric region allows the antrum and duodenum to have distinct uncoordinated motor activities. Coordination of aborally propagating peristaltic antral and duodenal activity is initiated by opening of the pylorus, which is followed by distention-induced duodenal peristalsis. Throughout this coordinated motor activity, the pacemaker systems in antrum and duodenum remain independent.  相似文献   

12.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption.  相似文献   

13.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

14.
In addition to studies on the action of gastric juice, William Beaumont studied the motility of Alexis St. Martin's stomach. He documented the nature of fundal and antral motility and how antral contractions might convert an admixture of solid food and gastric juice into a uniform homogenous semifluid. Beaumont described forcible contractions of the antrum, closure of the pylorus during antral contraction, and the discriminatory nature of the pylorus. Beaumont may also have made the first observations of the gastric motor component of the interdigestive migrating motor complex.  相似文献   

15.
Objective: Tachygastria is known to be associated with gastric hypomotility. This study investigated the effect of tachygastrial electrical stimulation (TES) on food intake and its effects on gastric motility. Research Methods and Procedures: Five experiments were performed to study the effects of TES on gastric slow waves, gastric tone, accommodation, and antral contractions, gastric emptying, acute food intake, and chronic food intake in dogs. Results: TES at tachygastrial frequencies induced tachygastria and reduced normal slow waves. TES significantly reduced gastric tone or induced gastric distention, impaired gastric accommodation, and inhibited antral contractions. TES significantly delayed gastric emptying. Acute TES reduced food intake but did not induce any noticeable symptoms. Chronic TES resulted in a 20% reduction in food intake, and the effect of TES was found to be related to specific parameters. Discussion: TES at the distal antrum results in a significant reduction in food intake in dogs, and this inhibitory effect is probably attributed to TES‐induced reduction in proximal gastric tone, gastric accommodation, antral contractility, and gastric emptying. These data suggest a therapeutic potential of the specific method of TES for obesity.  相似文献   

16.
Huang SC 《Life sciences》2011,88(17-18):819-824
AimsLeukotriene D4 (LTD4) causes contraction of the stomach through unclear receptors. The aim of the present study is to characterize the cysteinyl leukotriene receptor (CysLT) mediating leukotriene-induced muscle contraction in the stomach.Main methodsWe measured contraction of gastric muscle strips isolated from the guinea pig fundus and antrum caused by cysteinyl leukotrienes, including LTC4, LTD4 and LTE4, as well as the dihydroxy leukotriene LTB4 in vitro.Key findingsIn both fundic and antral muscle strips, LTC4 and LTD4 caused marked whereas LTE4 caused moderate, concentration-dependent contractions. In contrast, LTB4 caused only small contraction. The relative potencies for cysteinyl leukotrienes to cause contraction in both fundus and antrum were LTC4 = LTD4 > LTE4. The LTD4-induced contraction was not affected by tetrodotoxin or atropine, suggesting that the action is not neurally mediated. The LTD4-induced contraction in the fundus was almost abolished by the CysLT1 selective antagonist montelukast. In contrast, the LTD4-induced contraction in the antrum was only partially inhibited by montelukast or the dual CysLT1 and CysLT2 antagonist BAY u9773. This antral contraction was almost abolished by the combination of montelukast and BAY u9773, indicating enhancement of inhibition.SignificanceThe results of the present study demonstrate that cysteinyl leukotrienes LTC4, LTD4 and LTE4 cause moderate to marked whereas the dihydroxy leukotriene LTB4 causes small muscle contraction in the stomach in vitro. The leukotriene-induced contraction is mediated by CysLT1 in fundus but by CysLT1 and CysLT2 in antrum.  相似文献   

17.
The aim of this study was to investigate the effects and mechanisms of intestinal electrical stimulation (IES) on gastric tone, antral and pyloric contractions, and gastric emptying in dogs. Female hound dogs were equipped with a duodenal or gastric cannula, and one pair of serosal electrodes was implanted in the small intestine. The study consisted of five different experiments. Liquid gastric emptying was assessed by collection of chyme from the duodenal cannula in a number of sessions with and without IES and with and without N-nitro-l-arginine (l-NNA). Postprandial antral and pyloric contractions were measured with and without IES and in the absence and presence of l-NNA or phentolamine by placement of a manometric catheter into the antrum and pylorus via the duodenal cannula. Gastric tone was assessed by measurement of gastric volume at a constant pressure. Gastric emptying was substantially and significantly delayed by IES or l-NNA compared with the control session. IES-induced delay of gastric emptying became normal with addition of l-NNA. IES reduced gastric tone, which was blocked by l-NNA. IES also inhibited antral contractions (frequency and amplitude), and this inhibitory effect was not blocked by l-NNA but was blocked by phentolamine. IES alone did not affect pyloric tone or resistance, but IES + l-NNA decreased pyloric tone. In conclusion, IES reduces gastric tone via the nitrergic pathway, inhibits antral contractions via the adrenergic pathway, does not affect pyloric tone, and delays liquid gastric emptying. IES-induced delay of gastric emptying is attributed to its inhibitory effects on gastric motility.  相似文献   

18.
Experiments were performed on four cats to characterize fasting gastric and small bowel motility and to assess the role of extrinsic vagal innervation in the control of that motor activity. A multilumen manometry tube was positioned to record pressure changes from the proximal small bowel and stomach. Transient vagal nerve blockade was accomplished by cooling the cervical vagosympathetic nerve trunks, previously isolated in skin loops on each side of the neck. Two characteristic patterns of basal activity were documented in the stomach: (i) regular phasic contractions of variable amplitude in the body of the stomach; and (ii) infrequent, irregular contractions of high amplitude in the distal antrum. In the duodenum, two predominant activity patterns were noted: (i) periods of continuous irregular activity; and (ii) irregular clusters of contractions separated by quiescent intervals. No typical migrating motor complex activity was seen in the basal gastric or small bowel recordings. Bilateral vagal blockade did not consistently change the general pattern of gastric or small bowel activity, but did appear to reduce gastric contractile activity, as measured by motility indices. We conclude that extrinsic vagal innervation does not play a major role in the control of fasting feline gastric and duodenal motility.  相似文献   

19.
The emptying of a liquid test meal from the stomach was studied during, and in the absence of, electrical stimulation of cut ends of a thoracic branch of the vagus in anaesthetized cats. The test meal (154 mmol.1-1 NaCl and 30 mg.1-1 phenol red) was measured by collecting effluent from a duodenal fistula over a 30 min period. The stomach emptied about 60% of the meal under control conditions compared with over 90% during efferent stimulation of the vagus. The increased volumes emptied during efferent stimulation were not accounted for by secretion of gastric acid. Coincident with the vagally evoked antral contractions there was a gush of liquid from the duodenal cannula. Afferent vagal stimulation resulted in an initial marked delay of emptying followed by an acceleration so that the volume emptied after 30 min was similar to that in control experiments. Antral contractions, evoked by efferent vagal stimulation, accelerated the emptying of a liquid test meal from the stomach.  相似文献   

20.
A single intraperitoneal injection of endotoxin (40 microg/kg) significantly delayed gastric emptying of a solid nutrient meal. Blockade of nitric oxide synthase (NOS) with 30 mg/kg ip N(G)-nitro-L-arginine methyl ester or 20 mg/kg ip 7-nitroindazole [neuronal NOS (nNOS) inhibitor] significantly delayed gastric emptying in control animals but failed to modify gastric emptying in endotoxin-treated rats. Administration of 2.5, 5, and 10 mg/kg ip N(6)-iminoethyl-L-lysine [inducible NOS (iNOS) inhibitor] had no effect in either experimental group. Indomethacin (5 mg/kg sc), NS-398 (cyclooxygenase-2 inhibitor; 10 mg/kg ip), and dexamethasone (10 mg/kg sc) but not quinacrine (20 mg/kg ip) significantly prevented delay in gastric emptying induced by endotoxin but failed to modify gastric emptying in vehicle-treated animals. Ca(2+)-dependent NOS activity in the antrum pylorus of the stomach was diminished by endotoxin, whereas Ca(2+)-independent NOS activity was not changed. In addition, decreased nNOS mRNA and protein were observed in the antrum pylorus of endotoxin-treated rats. Our results suggest that downregulation of nNOS in the antrum pylorus of the stomach and synthesis of prostaglandins mediate the delay in gastric emptying of a solid nutrient meal induced by endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号