首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female Sprague-Dawley rats were decapitated at various stages of the estrous cycle, pregnancy, lactation and following ovariectomy. Anterior pituitary and ovarian tissues were collected and assayed to quantify luteinizing hormone releasing hormone (LHRH) receptors. No changes were noted in receptor affinity either between tissues or physiological stages studied. Pituitary LHRH receptor concentrations and content were greater (P less than 0.05) during diestrus II and proestrus than during estrus. Pituitary LHRH receptor concentrations and content during pregnancy were not different from those during estrus, however, a significant decrease was noted in pituitary LHRH receptor content and concentrations during lactation compared to estrus. Ovarian LHRH receptor content did not change with stage of reproduction (P less than 0.05). There was, however, a decrease (P less than 0.05) in ovarian LHRH receptor concentrations at Week 3 of pregnancy and Week 1 of lactation which was possibly due to the increase ovarian weight noted at both these physiological stages. There was no correlation (P less than 0.1) between ovarian and pituitary LHRH receptor numbers (r = 0.096). These findings suggest that the internal mechanisms which control changes in pituitary LHRH receptor numbers do not control ovarian LHRH receptor numbers.  相似文献   

2.
It is widely assumed that luteinizing hormone-releasing hormone (LHRH) neuronal activation is involved in the preovulatory surge of LH in the hen. In addition, this LH surge may be initiated by ovarian progesterone (P4) release. Thus, spontaneous and P4-induced LH surges should be associated with acute changes in LHRH content of discrete hypothalamic areas associated with LHRH cell bodies and/or LHRH axon terminals. Medial preoptic area (mPOA) and infundibulum (INF) LHRH content was measured by radioimmunoassay at intervals before, at, and following peak LH levels of a spontaneous preovulatory surge of LH, as well as when this surge was advanced by P4 administration in laying hens. Nonlaying birds served as additional controls. Levels of serum LH, P4, 17 beta-estradiol and pituitary LH were also measured. Increased (P less than 0.05) LHRH content in mPOA without changes in the INF are associated with peak serum LH levels of the spontaneous LH surge. By contrast, decreased (P less than 0.05) LHRH content in both mPOA and INF is associated with peak serum LH levels when the spontaneous surge was advanced 8 h by P4 administration to laying hens. Medial preoptic area and INF LHRH contents were significantly lower (P less than 0.05) in nonlaying than in laying hens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

4.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

5.
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.  相似文献   

6.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

7.
Ovariectomized (OVX), hypothalamo/pituitary-disconnected (HPD) ewes were used to ascertain the short-term effects of estradiol on the number of gonadotropin-releasing hormone (GnRH) receptors in the pituitary gland. The time course of the study was such that measurements were made during the period of short-term negative feedback and positive feedback. Groups of 4 OVX-HPD ewes were given 250-ng pulses of GnRH each hour and an i.m. injection of oil (Group 1) or 50 micrograms estradiol benzoate in oil (Groups 2-4). Blood samples were collected from each ewe prior to treatment with estradiol or oil and again immediately before slaughter. Groups 2, 3, and 4 were killed 6, 16, and 20 h, respectively, after administration of estradiol. Amplitudes of luteinizing hormone (LH) pulses and average plasma concentrations of LH were reduced 6 h after estradiol treatment. Sixteen and 20 h after injection, the average plasma LH levels were elevated, but pulse amplitudes were similar to preinjection values. The number of GnRH receptors was significantly (p less than 0.01) increased within 6 h of estrogen treatment and further increased 16 and 20 h after treatment. Pituitary content of LH was similar in all groups. These data indicate that the number of GnRH receptors in the pituitary gland of ewes can be acutely influenced by a direct effect of estradiol. However, the magnitude and direction of the change in receptors number does not account for the changes in pituitary responsiveness to GnRH, suggesting estradiol also modifies post-receptor mechanisms that influence secretion of LH.  相似文献   

8.
The studies in this report were designed to investigate whether the loss of pituitary luteinizing hormone (LH) responses to N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) in aged noncycling rats was the result of age, endocrine status associated with diestrus, or noncyclic low estrogen status. Pituitary monolayer cultures were prepared from female Fischer 344 rats. Aged (18-month-old) persistent diestrous (PD) rats, young diestrous (D) rats, or noncycling neonatally androgenized-constant estrous (AN-CE) rats were used. Enzymatically dispersed cells were maintained in the same batch of medium supplemented with dextran-coated charcoal adsorbed serums. Total LH contents were 1.75 +/- 0.04, 1.15 +/- 0.03, and 1.71 +/- 0.02 micrograms LH/dish in Day 5 cultures prepared from aged PD, young D, and AN-CE rats, respectively. Incubations with 5 mM DBcAMP for 4 h significantly (P less than 0.05) stimulated LH release in cultures prepared from young D and AN-CE rats but inhibited LH release in cultures prepared from aged PD rats even though a 4-h incubation with 10 nM LH releasing hormone (LHRH) stimulated LH release similarly in cultures of all three types of cells. The loss of DBcAMP-induced LH release in cultures prepared from aged PD rats was reversed by 17 beta-estradiol (E2). This treatment also reduced the basal LH release and increased the cellular LH content. These results indicate that the loss of DBcAMP-induced LH response in the aged rat is not an irreversible aging phenomenon but appears to be associated with the chronically low E2 status of aged PD rats but not young cycling D or noncycling AN-CE rats.  相似文献   

9.
An enzymatically dispersed pituitary preparation from Japanese quail (Coturnix coturnix) was used to study the dynamics of gonadotropin release. After an 18-h incubation, the cells were challenged with different luteinizing hormone-releasing hormones (LHRH) for 90 min. Using pituitary cells from mature males, mammalian and chicken LHRH I (Gln8-LHRH) had approximately equal luteinizing hormone (LH)-releasing activity whereas chicken LHRH II (His5, Trp7, Tyr8-LHRH) was 8-9 times more potent. The LHRH agonist (Trp6, Pro9-NEt-LHRH) had 15 times greater potency than chicken LHRH I. Pre-incubation with an LHRH antagonist (D-Phe2, D-Trp6-LHRH) significantly suppressed LH release. Acid extracts of median eminence released LH from pituitary cells, extracts from short-day and long-day males had equal activity, while tissue extracts from castrated males had significantly greater LH-releasing activity. Pituitary cells from sexually immature males released LH in response to chicken LHRH I in a similar profile to cells from mature males. These data indicate that the quail LHRH receptor in the male recognizes several different molecular species of LHRH and the response to LHRH is comparable between short- and long-day males. Pituitary cells from ovulating females were variably sensitive to LHRH peptides, possibly due to changes in pituitary sensitivity during the ovulatory cycle. Pituitary cells from immature females did not release LH in response to chicken LHRH I. However, pituitary cells from immature females photostimulated for 1 wk displayed a response to chicken LHRH I and II similar to that of pituitary cells from males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have reported earlier that administration of lithium, the widely-used drug for the treatment of acute mania and prophylaxis of recurrent manic-depressive bipolar disorders, leads to a disruption of estrous cycle and a significant suppression of the proestrous surge of luteinizing hormone (LH) in a number of laboratory rodents. In this report we have examined the effects of this antimanic drug on plasma and pituitary levels of LH and follicle stimulating hormone (FSH) in rats following ovariectomy (OVX), an altered endocrine state in which the levels of serum LH and FSH are highly and chronically elevated. Adult OVX rats, maintained under standardized laboratory conditions (LD 12: 12; white lights on at 06.00 h, CST) were injected (ip) with lithium, 40 days post-operation, at a dosage of 3.0 and 2.0 mEq/Kg b. wt. for 3 and 7 days respectively (twice daily at 08.00 and 16.00 h). Control OVX rats received nothing or saline injections, whereas an intact control (C) received no surgical manipulation or drug injections of any kind. As expected, the levels of plasma LH and FSH in OVX (only) group showed nearly 6-fold and 75-fold increase respectively compared to those in C. Lithium injections in OVX rats for 3 and 7 days resulted in a significant reduction in plasma LH (P less than .005 and P less than .02 respectively) and FSH (P less than .001) levels when compared with those in the OVX control groups. Lithium also led to a significant reduction in the levels of pituitary LH after both 3 (P less than .02) and 7 days (P less than .02), but the levels of pituitary FSH remained unchanged. These results suggest that the pituitary gonadotropes constitute a definitive target for lithium's action, either directly or via the hypothalamus.  相似文献   

12.
This study examined the noradrenergic mechanism in regulation of luteinizing hormone (LH) release in short- and long-term ovariectomized (OVX) steroids-primed rats. All rats were OVX on the diestrous day 1(D1) morning about 1000 h. After OVX, rats in the short-term OVX group were immediately primed with estradiol (E2, 0.1 mg/kg BW s.c.), fitted with atrial Silastic tubing, and a guide cannula in the right lateral cerebroventricle stereotaxically. Rats in the long-term OVX group received the same treatment (E2, atrial tubing and guide cannula implantation) three weeks later. Rats in both groups received progesterone (2 mg/rat s.c.) at 0930 h on the next day after E2. At 1000 h, intraventricular administration of norepinephrine HCl (NE, 0.01, 0.1, or 1.0 microgram in 2 microliters saline) was given. In short-term OVX-steroids-primed rats, NE did not alter LH levels in the peripheral plasma within 60 or 100 min. By contrast, in long-term OVX-steroids-primed rats, 1.0 microgram of NE gradually decreased plasma LH concentrations, which became significantly different from the initial value at the 60 min time point after treatment. On the other hand, intraventricular injection of 5 ng of the LH-releasing hormone (LHRH) elevated plasma LH concentrations within 10 min in both groups of rats, but at different efficacy: a brief release of LH in short-term OVX-steroids-primed rats and a prolonged release of LH in long-term OVX-steroids-primed rats. These results indicated that the interval after OVX plays a critical role in modulating the responsiveness to NE and LHRH in the steroids-primed OVX rats.  相似文献   

13.
The effect of androgens on pituitary response to luteinizing-hormore-releasing hormone (LHRH) and their ability to modify effects of 17beta-estradiol (E2) on pituitary responsiveness to LHRH were tested in ovariectomized rats maintained on a daily dose of 0.25 microgram estradiol benzoate per rat for 6 d before androgen administration. Testosterone propionate (TP) (4, 40, 400, or 4000 microgram per rat), administered 24 h before LHRH (500 ng per rat), had no significant effect on luteinizing hormone (LH) or follicle-stimulating hormone (FSH) response. Similar doses of dihydrotestosterone (DHT) did not significantly alter the LH response but significantly suppressed the FSH response. Even the lowest dose completely blocked the FSH response to LHRH. TP in combination with 4 or 400 microgram of E2 suppressed the stimulatory effect of E2 on both LH and FSH response to LHRH in a dose-related manner. DHT and E2 in combination affected LH response inconsistently, whereas their ratio determined FSH response; there was pronounced inhibition of FSH response in rats given high doses of DHT combined with low doses of E2; DHT inhibition of FSH response in animals receiving 4 microgram of DHT with 400 microgram E2 was partially overcome by the stimulatory effect of E2. Our results indicate that TP and DHT affect LH and FSH response to LHRH differently. The ratio of androgen to estrogen is important in determining the response to LHRH.  相似文献   

14.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

15.
Negative feedback of estrogen was investigated in ovariectomized female guinea pigs. Two weeks after ovariectomy, indwelling catheters were inserted into the jugular vein, and 3 days later, blood samples were taken every 10 min to determine the pattern of luteinizing hormone (LH) secretion. LH secretion in these guinea pigs was episodic, with a mean pulse period of 32 min. The mean pulse amplitude was 2.1 ng/ml, with mean plasma LH levels of 1.8 ng/ml. Twenty-five micrograms 17 beta-estradiol (E2), given i.v., caused a pronounced inhibition of pulsatile LH release. Twenty-five microliters of 100% ethanol (vehicle) had no effect on plasma LH values. In a second set of experiments, ovariectomized female guinea pigs were given two injections of luteinizing hormone-releasing hormone (LHRH) (1 microgram/kg BW, i.v.) separated by 30 min. Sharp rises in serum LH values were detected after each injection. A third injection of LHRH was administered after an injection of either 25 micrograms E2 or 25 microliters vehicle. In the presence of E2, the LH response was significantly (p less than 0.005) diminished, whereas the vehicle did not change the LH response to LHRH. These rapid effects of E2 on LH secretion and the pituitary responsiveness to LHRH infusion indicate that in the ovariectomized guinea pig E2 can directly block gonadotropin secretion. These findings are consistent with the hypothesis that negative feedback actions of E2 are directly on the membrane of the gonadotrope.  相似文献   

16.
Isolated pituitary cells from metestrous, ovariectomized (OVX), and ovariectomized-estradiol treated (OVX-EB) rats were employed to study the gonadotropin response to luteinizing hormone-releasing hormone (LHRH) challenge and to quantitate LHRH receptors, using a labeled LHRH analog. Ovariectomy (3–4 weeks post castration) resulted in a reduction of LHRH receptor concentration from 34.4 ± 2.1 in metestrous females to 14.3 ± 0.9 fmoles/106 cells. Concomitantly, the luteinizing hormone (LH) response to a near-maximal dose of LHRH (5 ng/ml) decreased from a 3-fold stimulation in intact females to 1.13-fold stimulation in cells from OVX rats. Replacement therapy with EB (50 ug/rat for 2 days) to OVX rats restored LH response and LHRH binding sites (a 2.5-fold stimulation in LH secretion and 32.0 ± 2.1 fmoles/106 cells, respectively). The LH response to LHRH stimulation was not altered after one day of EB treatment although the number of LHRH binding sites was increased. The changes in the number of LHRH binding sites were not accompanied by any alterations in the affinity of the LHRH analog (Kd ? 0.5 × 10?9M). It is concluded that variations in LHRH receptor number reflect the degree of pituitary sensitivity to LHRH and it may suggest that LHRH and estradiol modulation of gonadotropin release is mediated by these receptors.  相似文献   

17.
Sequential bleeding and push-pull perfusion of the hypothalamus were used to characterize luteinizing hormone (LH) and LH-releasing hormone (LHRH) release in ovariectomized (OVX) ewes after injection of corn oil or estradiol benzoate (EB). Push-pull cannulae were surgically implanted into the stalk median eminences of 24 OVX ewes. Seven to 14 days later each of 20 animals was given an i.m. injection of 50 micrograms EB. Blood samples and push-pull perfusate were collected at 10-min intervals for 6-12 h beginning 12-15 h after EB injection. Four OVX ewes were given i.m. injections of corn oil 7 days after implantation of push-pull cannulae. Blood samples and push-pull perfusate were collected at 10-min intervals for 4 h between 18 and 22 h after injection of corn oil. Luteinizing hormone remained below 2 ng/ml throughout most of the sampling periods in 9 of 20 EB-treated ewes. In 5 of these 9 LHRH also was undetectable, whereas in 4 LHRH was detectable (1.84 +/- 0.29 pg/10 min), but did not increase with time. Preovulatory-like surges of LH occurred in 11 EB-treated ewes, but LHRH was undetectable in 5. In 4 of 6 ewes showing LH surges and detectable LHRH, sampling occurred during the onset of the LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study investigated the role of 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha,5 alpha-THP) in the modulation of gonadotropin secretion using the immature ovariectomized (OVX) rat primed with a low dose of estradiol. A treatment regimen of either 0.2 or 0.4 mg/kg of 3 alpha,5 alpha-THP given in conjunction with estradiol for 4 days significantly increased levels of serum luteinizing hormone (LH) but had no effect on serum follicle-stimulating hormone (FSH). Estrogen-primed rats receiving a single injection of 3 alpha,5 alpha-THP at 0930 h showed an increase in serum and pituitary LH levels at 1200 h and 1500 h. At 1800 h, only pituitary levels of LH remained significantly higher than controls. An injection of 3 alpha,5 alpha-THP at 1230 h in estrogen-primed rats resulted in enhanced levels of pituitary LH at 1500 h and elevated levels of both serum and pituitary LH at 1800 h. When 3 alpha,5 alpha-THP was given at 0930 h and 1230 h, elevated serum levels of LH were maintained for over 6 h. The administration of pentobarbital (Pb) 30 min after an injection of 3 alpha,5 alpha-THP at 0930 h or 1230 h prevented the increases in serum LH at 1200 h, 1500 h or 1800 h. This suggests that LH-releasing hormone (LHRH) is involved in mediating the LH response by 3 alpha,5 alpha-THP. There was no change in the sensitivity of the pituitary to LHRH following 3 alpha,5 alpha-THP treatment, indicating the absence of a pituitary effect of this steroid.  相似文献   

19.
Studies were undertaken to determine if changes in the amplitude of luteinizing hormone (LH) pulses that occur in response to changes in the frequency of gonadotropin-releasing hormone (GnRH) pulses are due to an alteration in the number of GnRH receptors. Ewes were ovariectomized (OVX) and the hypothalamus was disconnected from the pituitary (HPD). Ewes were then given pulses of GnRH at a frequency of 1/h or 1/3 h. Two control groups were included: OVX ewes not subjected to HPD, and HPD ewes that were not OVX. At the end of one week of treatment, blood samples were collected to determine the amplitude of LH pulses. The treated ewes were killed just before the next scheduled pulse of GnRH, and the content of LH and number of GnRH receptors were measured in each pituitary. The amplitude of LH pulses was highly correlated with the amount of LH in the pituitary gland (r = 0.71, p less than 0.01), and both LH content and pulse amplitude (mean + SEM) were higher in ewes receiving GnRH once per 3 h (189.7 +/- 39.3 microgram/pituitary, 10.3 +/- 1.1 ng/ml, respectively) than in ewes receiving GnRH once per h (77.8 +/- 11.4 microgram/pituitary, 5.2 +/- 1.3 ng/ml). The pituitary content of LH was highest in the OVX ewes (260.2 +/- 57.4 micrograms/pituitary) and lowest in the nonpulsed HPD ewes (61.7 +/- 51.2 micrograms/pituitary). The number of GnRH receptors was similar in all groups, and was not correlated with any other variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Anterior pituitary (AP) glands were removed from groups of female golden hamsters at 0900 h on estrus (E), diestrus I (DI), and diestrus II (DII) and at 1200 h and 1500 h on proestrus (P12 and P15), as well as at 0900 h from ovariectomized hamsters (OVX). Hemipituitaries were incubated in culture medium with or without 10(-8) M luteinizing hormone-releasing hormone (LHRH) for 3 h at 37 degrees C to determine the magnitude of basal and LHRH-stimulated follicle-stimulating hormone (FSH) release. All samples were assessed for FSH activity by radioimmunoassay and radioreceptor assay. In a second set of experiments, AP were removed from E, DII, and OVX hamsters and bisected. One hemipituitary was homogenized in 10 mM Tris-HCl and the other half was incubated for 3 h. Follicle-stimulating hormone forms present within pituitary extracts or secreted into medium were separated by an isoelectric focusing technique, chromatofocusing. Basal FSH release was lowest in AP collected on DII and P12, higher in AP collected on E and DI, and highest in AP from OVX. Luteinizing hormone-releasing hormone-stimulated release of FSH was highest in AP obtained on DII and P12, lower in AP collected on E and DI, and lowest in AP from OVX. Radio-receptor-to-radioimmunoassay ratio of secreted FSH was greatest when basal FSH secretion was low and LHRH sensitivity was high (DII and P12) and least when basal FSH secretion was high and LHRH sensitivity low (E and after OVX).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号