首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aphid Uroleucon sonchi contains a prokaryotic endosymbiont (Buchnera) with plasmids having trpEG as well as remnants of trpE pseudogenes. In this respect it resembles Buchnera from the aphid Diuraphis noxia. Phylogenetic trees based on trpE (plasmid gene) and trpB (chromosomal genes) from eight species of aphids are congruent, indicating a lack of exchange of plasmids among endosymbionts from different aphid species. Received: 16 December 1996 / Accepted: 26 December 1996  相似文献   

2.
The prokaryotic endosymbiont (Buchnera) of the aphid Schizaphis graminum contains 24 copies of a plasmid that has genes encoding enzymes of the leucine biosynthetic pathway while the endosymbiont of the related aphid Diuraphis noxia has only one copy of this plasmid. These results, in conjunction with similar results for the trpEG-containing plasmids, suggest that D. noxia has a reduced demand for endosymbiont-derived essential amino acids. Received: 11 September 1997 / Accepted: 23 September 1997  相似文献   

3.
Buchnera are prokaryotic endosymbionts found in most aphids. One of their functions is the synthesis of the essential amino acid tryptophan for the aphid host. In Buchnera from some aphids that have a long development time, trpEG, which encodes the first enzyme of the tryptophan biosynthetic pathway (anthranilate synthase), is found as one copy on the endosymbiont chromosome and is located between hsIU and fpr. In Buchnera from Schizaphis graminum, which has a short development time, trpEG is amplified on plasmids. We have cloned and sequenced a 4.1-kb DNA fragment from Buchnera of S. graminum and have found the gene order hsIU-ibp-fpr-yjeA-kdtB. The proximity of hsIU and fpr is consistent with the excision, in an endosymbiont ancestor, of trpEG from a location between these two genes, with the excision either followed or preceded by acquisition of ibp. Received: 5 December 1998 / Accepted: 10 December 1998  相似文献   

4.
The bacterial endosymbionts (Buchnera) from the aphids Rhopalosiphum padi, R. maidis, Schizaphis graminum, and Acyrthosiphon pisum contain the genes for anthranilate synthase (trpEG) on plasmids made up of one or more 3.6-kb units. Anthranilate synthase is the first as well as the rate-limiting enzyme in the tryptophan biosynthetic pathway. The amplification of trpEG on plasmids may result in an increase of enzyme protein and overproduction of this essential amino acid, which is required by the aphid host. The nucleotide sequence of trpEG from endosymbionts of different species of aphids is highly conserved, as is an approximately 500-bp upstream DNA segment which has the characteristics of an origin of replication. Phylogenetic analyses were performed using trpE and trpG from the endosymbionts of these four aphids as well as from the endosymbiont of Schlechtendalia chinensis, in which trpEG occurs on the chromosome. The resulting phylogeny was congruent with trees derived from sequences of two chromosome-located bacterial genes (part of trpB and 16S ribosomal DNA). In turn, trees obtained from plasmid-borne and bacterial chromosome-borne sequences were congruent with the tree resulting from phylogenetic analysis of three aphid mitochondrial regions (portions of the small and large ribosomal DNA subunits, as well as cytochrome oxidase II). Congruence of trees based on genes from host mitochondria and from bacteria adds to previous support for exclusively vertical transmission of the endosymbionts within aphid lineages. Congruence with trees based on plasmid-borne genes supports the origin of the plasmid-borne trpEG from the chromosomal genes of the same lineage and the absence of subsequent plasmid exchange among endosymbionts of different species of aphids. Received: 22 August 1995 / Accepted: 6 September 1995  相似文献   

5.
The prokaryotic endosymbionts (Buchnera) of aphids are known to provision their hosts with amino acids that are limiting in the aphid diet. Buchnera from the aphids Schizaphis graminum and Diuraphis noxia have plasmids containing leuABCD, genes that encode enzymes of the leucine biosynthetic pathway, as well as genes encoding proteins probably involved in plasmid replication (repA1 and repA2) and an open reading frame (ORF1) of unknown function. The newly reported plasmids closely resemble a plasmid previously described in Buchnera of the aphid Rhopalosiphum padi [Bracho AM, Martínez-Torres D, Moya A, Latorre A (1995) J Mol Evol 41:67–73]. Nucleotide sequence comparisons indicate conserved regions which may correspond to an origin of replication and two promoters, as well as inverted repeats, one of which resembles a rho-independent terminator. Phylogenetic analyses based on amino acid sequences of leu gene products and ORF1 resulted in trees identical to those obtained from endosymbiont chromosomal genes and the plasmid-borne trpEG. These results are consistent with a single evolutionary origin of the leuABCD-containing plasmid in a common ancestor of Aphididae and the lack of plasmid exchange between endosymbionts of different aphid species. Trees for ORF1 and repA (based on both nucleotides and amino acids) are used to examine the basis for leu plasmid differences between Buchnera of Thelaxes suberi and Aphididae. The most plausible explanation is that a single transfer of the leu genes to an ancestral replicon was followed by rearrangements. The related replicon in Buchnera of Pemphigidae, which lacks leuABCD, appears to represent the ancestral condition, implying that the plasmid location of the leu genes arose after the Pemphigidae diverged from other aphid families. This conclusion parallels previously published observations for the unrelated trpEG plasmid, which is present in Aphididae and absent in Pemphigidae. Recruitment of amino acid biosynthetic genes to plasmids has been ongoing in Buchnera lineages after the infection of aphid hosts. Received: 9 March 1998 / Accepted: 18 May 1998.  相似文献   

6.
Buchnera aphidicola BCc has lost its symbiotic role as the tryptophan supplier to the aphid Cinara cedri. We report the presence of a plasmid in this endosymbiont that contains the trpEG genes. The remaining genes for the pathway (trpDCBA) are located on the chromosome of the secondary endosymbiont “Candidatus Serratia symbiotica.” Thus, we propose that a symbiotic consortium is necessary to provide tryptophan.  相似文献   

7.
Buchnera aphidicola is an obligate intracellular symbiont of aphids. One of its proposed functions is the synthesis of essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. The genetic organization of the tryptophan pathway in Buchnera from proliferous aphids of the family Aphididae has previously been shown to reflect a capacity to overproduce this essential amino acid (C.-Y. Lai, L. Baumann, and P. Baumann, Proc. Natl. Acad. Sci. USA 91:3819–3823, 1994). This involved amplification of the genes for the first enzyme in the pathway, anthranilate synthase (TrpEG), on a low-copy-number plasmid. Here we report on the finding and molecular characterization of TrpEG-encoding plasmids in Buchnera from aphids of the distantly related family Pemphigidae. Buchnera from Tetraneura caerulescens contained a 3.0-kb plasmid (pBTc2) that carried a single copy of trpEG and resembled trpEG plasmids of Buchnera from the Aphididae. The second plasmid (pBPs2), isolated from Buchnera of Pemphigus spyrothecae, contained a different replicon. It consisted of a putative origin of replication containing iterons and an open reading frame, designated repAC, which showed a high similarity to the gene encoding the replication initiation protein RepA of the RepA/C replicon from the broad-host-range IncA/C group of plasmids. The plasmid population was heterogeneous with respect to the number of tandem repeats of a 1.8-kb unit carrying repAC1, trpG, and remnants of trpE. The two principal forms consisted of either five or six copies of this repeat and a single-copy region carrying repAC2, the putative origin of replication, and trpE. The unexpected finding of elements of the RepA/C replicon in previously characterized trpEG plasmids from Buchnera of the Aphididae suggests that a replacement of replicons has occurred during the evolution of these plasmids, which may point to a common ancestry for all Buchnera trpEG amplifications.  相似文献   

8.
The symbiotic bacteria Buchnera provide their aphid hosts with tryptophan and other essential amino acids. Tryptophan production by Buchnera varied among 12 parthenogenetic clones of the pea aphid Acyrthosiphon pisum (Harris), as determined from both the incorporation of radioactivity from 14C‐anthranilate into tryptophan and the protein‐tryptophan growth rate of larval aphids on tryptophan‐free diet. The values of tryptophan production obtained for the two methods were correlated significantly with each other but not with the level of amplification of the Buchnera genes trpEG, which code for anthranilate synthase, a key enzyme in tryptophan biosynthetic pathway. This study provides the first direct demonstration of interclonal variation in production of any nutrient in an aphid–Buchnera symbiosis and indicates that a key aspect of Buchnera phenotype (tryptophan production) does not vary in a simple fashion with Buchnera genotype.  相似文献   

9.
We wanted to test whether Mollitrichosiphum, an aphid genus with life cycles on subtropical woody host plants, and Buchnera, the primary endosymbiont of aphids, evolve in parallel. We used three aphid genes (mitochondrial COI, cytochrome oxidase subunit I and Cytb, cytochrome b; nuclear EF1α, translation elongation factor 1 alpha) and two Buchnera genes (16S rDNA; gnd, gluconate‐6‐phosphate dehydrogenase) to reconstruct phylogenies. The congruence between the phylogenetic trees of aphids and Buchnera was then measured. The results present phylogenetic evidence for the parallel evolution of Mollitrichosiphum and Buchnera at the intraspecific as well as the interspecific levels. Our results support the possibility of using endosymbiont genes to study host evolutionary history and biogeographical patterns. We also investigated the usability of the Buchnera gnd gene as a barcoding marker for aphid identification.  相似文献   

10.
This study tested for horizontal transfer of plasmids among Buchnera aphidicola strains associated with ecologically and phylogenetically related aphid hosts (Uroleucon species). Phylogenetic congruence of Buchnera plasmid (trpEG and leuABC) and chromosomal (dnaN and trpB) genes supports strictly vertical long-term transmission of plasmids, which persist due to their contributions to host nutrition rather than capacity for infectious transfer. Synonymous divergences indicate elevated mutation on plasmids relative to chromosomal genes.  相似文献   

11.
Effect of temperature on the growth of the primary endosymbiont Buchnera aphidicola in the cowpea aphid Aphis craccivora was studied by measuring quantitatively the copy number of 16S rDNA of this endosymbiont. A 1.5 kb segment of eubacterial 16S rDNA amplified by PCR from total DNA of Aphis craccivora was confirmed by RFLP analysis and sequence BLAST as that of Buchnera aphidicola. No secondary endosymbiont was detected in the aphid population studied. The relative levels of Buchnera ratio, quantified by real-time PCR, were higher in old nymphs than in young ones at temperatures between 10–30˚C, and this age-dependent difference was more pronounced at lower temperatures. Throughout the entire reproductive stage of Aphis craccivora, the relative levels of Buchnera ratio were higher at 10–25˚C than at 30˚C and 35˚C. A close relationship was found between these levels and the net reproductive rate (R 0 ) of aphid, which was suppressed not only at 35˚C but also at 10˚C. The decoupling of Aphis craccivora and Buchnera response at low temperatures suggests that the cowpea aphid was more sensitive to low temperatures, while Buchnera was more sensitive to high temperatures.  相似文献   

12.
A+T content, phylogenetic relationships, codon usage, evolutionary rates, and ratio of synonymous versus non-synonymous substitutions have been studied in partial sequences of the atpD and aroQ/pheA genes of primary (Buchnera) and secondary symbionts of aphids and a set of selected non-symbiotic bacteria, belonging to the five subdivisions of the Proteobacteria. Compared to the homologous genes of the last group, both genes belonging to Buchnera behave in a similar way, showing a higher A+T content, forming a monophyletic group, a loss in codon bias, especially in third base position, an evolutionary acceleration and an increase in the number of non-synonymous substitutions, confirming previous results reported elsewhere for other genes. When available, these properties have been partly observed with the secondary symbionts, but with values that are intermediate between Buchnera and free living Proteobacteria. They show high A+T content, but not as high as Buchnera, a non-solved phylogenetic position between Buchnera, and the other γ-Proteobacteria, a loss in codon bias, again not as high as in Buchnera and a significant evolutionary acceleration in the case of the three atpD genes, but not when considering aroQ/pheA genes. These results give support to the hypothesis that they are symbionts at different stages of the symbiotic accommodation to the host.  相似文献   

13.
Aphids harbor primary endosymbionts, Buchnera aphidicola, in specialized cells within their body cavities. Aphids and Buchnera have strict mutualistic relationships in nutrition exchange. This ancient association has received much attention from researchers who are interested in endosymbiotic evolution. Previous studies have found parallel phylogenetic relationships between non‐galling aphids and Buchnera at lower taxonomic levels (genus, species). To understand whether relatively isolated habitats such as galls have effect on the parallel relationships between aphids and Buchnera, the present paper investigated the phylogenetic relationships of gall aphids from Pemphigus and allied genera, which induce pseudo‐galls or galls on Populus spp. (poplar) and Buchnera. The molecular phylogenies inferred from three aphid genes (COI, COII and EF‐1α) and two Buchnera genes (gnd, 16S rRNA gene) indicated significant congruence between aphids and Buchnera at generic as well as interspecific levels. Interestingly, both aphid and Buchnera phylogenies supported three main clades corresponding to the galling locations of aphids, namely leaf, the joint of leaf blade and petiole, and branch of the host plant. The results suggest phylogenetic conservatism of gall characters, which indicates gall characters are more strongly affected by aphid phylogeny, rather than host plants.  相似文献   

14.
Translational efficiency is controlled by tRNAs and other genome-encoded mechanisms. In organelles, translational processes are dramatically altered because of genome shrinkage and horizontal acquisition of gene products. The influence of genome reduction on translation in endosymbionts is largely unknown. Here, we investigate whether divergent lineages of Buchnera aphidicola, the reduced-genome bacterial endosymbiont of aphids, possess altered translational features compared with their free-living relative, Escherichia coli. Our RNAseq data support the hypothesis that translation is less optimal in Buchnera than in E. coli. We observed a specific, convergent, pattern of tRNA loss in Buchnera and other endosymbionts that have undergone genome shrinkage. Furthermore, many modified nucleoside pathways that are important for E. coli translation are lost in Buchnera. Additionally, Buchnera’s A + T compositional bias has resulted in reduced tRNA thermostability, and may have altered aminoacyl-tRNA synthetase recognition sites. Buchnera tRNA genes are shorter than those of E. coli, as the majority no longer has a genome-encoded 3'' CCA; however, all the expressed, shortened tRNAs undergo 3′ CCA maturation. Moreover, expression of tRNA isoacceptors was not correlated with the usage of corresponding codons. Overall, our data suggest that endosymbiont genome evolution alters tRNA characteristics that are known to influence translational efficiency in their free-living relative.  相似文献   

15.

Background  

Carpenter ants (genus Camponotus) are considered to be omnivores. Nonetheless, the genome sequence of Blochmannia floridanus, the obligate intracellular endosymbiont of Camponotus floridanus, suggests a function in nutritional upgrading of host resources by the bacterium. Thus, the strongly reduced genome of the endosymbiont retains genes for all subunits of a functional urease, as well as those for biosynthetic pathways for all but one (arginine) of the amino acids essential to the host.  相似文献   

16.
Two pseudogenes belonging to the Igk-V1 variable region group have been isolated from BALB/c mice. The genes share >96.5% identity of nucleotide sequence in a 1800 base pair (bp) region surrounding the coding region, but deletions of 221 bp and 84 bp have removed essential sequences from the two genes. As the deletions are different in the two pseudogenes, they must have occurred independently in each gene during or subsequent to the duplication event which gave rise to the genes from a common ancestral gene. Polymerase chain reaction analysis was used to identify the pseudogenes in inbred strains of mice. BALB/c (Igk c) and AKR (Igk a), prototype strains representative of the predominant haplotypes, possess both pseudogenes but no intact copy. Only one of the pseudogenes was present in SJL (Igk a). Strains C58, c.C58 (Igk d) and NZB (Igk b) possessed an intact version of the gene. This distribution of haplotypes is consistent with a close linkage of the pseudogenes with other Igk-V1 genes on chromosome 6. The translated amino acid sequence of the pseudogenes indicates that prior to their acquiring deletions they encoded typical Igk-V1 variable regions except for an unusual FR2 region, in which the conserved proline at position 44 is replaced by leucine and the normally hydrophobic position 36 was occupied by histidine. Possible mechanisms to explain the occurrence of deletions in both of the pseudogenes in the recent evolution of BALB/c are discussed. One explanation would be that the two genes were already nonfunctional at the time of the duplication so that the subsequent deletions represent neutral events which became fixed in the inbred strains by a process of genetic drift. Alternatively, if the genes were functional at the time of duplication, their rapid loss due to deletion events suggests that negative selection may have acted to eliminate the genes from the V-region repertoire. Address correspondence and offprint requests to: D. M. Gibson.  相似文献   

17.
Aphids harbor proteobacterial endosymbionts such as Buchnera aphidicola housed in specialized bacteriocytes derived from host cells. The endosymbiont Buchnera supplies essential amino acids such as arginine to the host cells and, in turn, obtains sugars needed for its survival from the hemolymph. The mechanism of sugar supply in aphid bacteriocytes has been rarely studied. It also remains unclear how Buchnera acquires its carbon source. The hemolymph sugars in Acyrthosiphon pisum are composed of the disaccharide trehalose containing two glucose molecules. Here, we report for the first time that trehalose is transported and used as a potential carbon source by Buchnera across the bacteriocyte plasma membrane via trehalose transporters. The current study characterized the bacteriocyte trehalose transporter Ap_ST11 (LOC100159441) using the Xenopus oocyte expression system. The Ap_ST11 transporter was found to be proton-dependent with a Km value ≥700 mM. We re-examined the hemolymph trehalose at 217.8 mM using a fluorescent trehalose sensor. The bacteriocytes did not obtain trehalose by facilitated diffusion along the gradient across cellular membranes. These findings suggest that trehalose influx into the bacteriocytes depends on the extracellular proton-driven secondary electrochemical transporter.  相似文献   

18.
A GroEL homolog with a molecular mass of 60 kDa, produced by the primary endosymbiotic bacterium (a Buchnera sp.) of Myzus persicae and released into the hemolymph, has previously been shown to be a key protein in the transmission of potato leafroll virus (PLRV). Like other luteoviruses and pea enation mosaic virus, PLRV readily binds to extracellular Buchnera GroEL, and in vivo interference in this interaction coincides with reduced capsid integrity and loss of infectivity. To gain more knowledge of the nature of the association between PLRV and Buchnera GroEL, the groE operon of the primary endosymbiont of M. persicae (MpB groE) and its flanking sequences were characterized and the PLRV-binding domain of Buchnera GroEL was identified by deletion mutant analysis. MpB GroEL has extensive sequence similarity (92%) with Escherichia coli GroEL and other members of the chaperonin-60 family. The genomic organization of the Buchnera groE operon is similar to that of the groE operon of E. coli except that a constitutive promoter sequence could not be identified; only the heat shock promoter was present. By a virus overlay assay of protein blots, it was shown that purified PLRV bound as efficiently to recombinant MpB GroEL (expressed in E. coli) as it did to wild-type MpB GroEL. Mutational analysis of the gene encoding MpB GroEL revealed that the PLRV-binding site was located in the so-called equatorial domain and not in the apical domain which is generally involved in polypeptide binding and folding. Buchnera GroEL mutants lacking the entire equatorial domain or parts of it lost the ability to bind PLRV. The equatorial domain is made up of two regions at the N and C termini that are not contiguous in the amino acid sequence but are in spatial proximity after folding of the GroEL polypeptide. Both the N- and C-terminal regions of the equatorial domain were implicated in virus binding.  相似文献   

19.
The HLA-DR2 haplotype contains three \-chain encoding DRB genes and one -chain encoding DRA gene. Of the three DRB genes, two are presumably functional (HLA-DRB1 and HLA-DRB5), whereas the third (HLA-DRBV1) is a pseudogene. A pseudogene closely related to HLA-DRBVI is present in the chimpanzee (Patr-DRB6) and in the gorilla (Gogo-DRB6). We sequenced the HLA-DRBVI and Patr-DRB6 pseudogenes (all exons and most of the introns), and compared the sequence to that of the Gogo-DRB6 gene (of which only the exon sequence is available). All three pseudogenes seem to lack exon 1 and contain other deletions responsible for shifts in the translational reading frame. At least the HLA-DRBVI pseudogene, however, seems to be transcribed nevertheless. The chimpanzee pseudogene contains two inserts in intron 2, one of which is an Alu repeat belonging to the Sb subfamily, while the other remains unidentified. These inserts are lacking in the human gene. A comparison with sequences published by other investigators revealed the presence of the HLA-DRBVI pseudogene also in the DRI and DRw10 haplotypes. Measurements of genetic distances indicate DRB6 to be closely related to the DRB2 pseudogene and to the HLA-DRB4 functional gene. In humans, gorillas, and chimpanzees, the DRB6 pseudogene is associated with the same functional gene (DRB5) indicating that this linkage disequilibrium is at least six million years old and that DR2 is one of the oldest DR haplotypes in higher primates.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M77284-M77295. Address correspondence and offprint requests to: J. Klein.  相似文献   

20.
A unique family of ribonucleases was identified by exhaustive screening of genomic and cDNA libraries using a probe derived from a gene encoding a ribonuclease stored in the mouse eosinophil secondary granule. This family contains at least 13 genes, which encode ribonucleases, and two potential pseudogenes. The conserved sequence identity among these genes (∼70%), as well as the isolation/purification of these ribonucleases from eosinophil secondary granules, has led us to conclude that these genes form a unique clade in the mouse that we have identified as the Ear (Eosinophil-associated ribonuclease) gene family. Analyses of the nucleotide substitutions that have occurred among these ribonuclease genes reveal that duplication events within this family have been episodic, occurring within three unique periods during the past 18 × 106 years. Moreover, comparisons of non-synonymous (Ka) vs. synonymous (Ks) rates of nucleotide substitution show that although these genes conserve residues necessary for RNase activity, selective evolutionary pressure(s) exist such that acquired amino acid changes appear to be advantageous. The selective advantage of these amino acid changes is currently unclear, but the occurrence of this phenomenon in both the mouse and the human highlights the importance of these changes for Ear and, therefore, eosinophil effector function(s). Received: 25 October 2000 / Accepted: 18 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号