首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vässin H  Campos-Ortega JA 《Genetics》1987,116(3):433-445
We report here the results of a genetic analysis of the gene Delta (Dl) of Drosophila melanogaster. Dl has been mapped to the band 92A2, on the basis of two pieces of evidence: (1) this band is the common breakpoint of several chromosomal aberrations associated with Dl mutations and (2) recombination mapping of alleles of five different lethal complementation groups that are uncovered by Df( 3R)Dl(FX3) (breakpoints at 91F11; 92A3). Dl was found to map most distally of all five complementation groups. The analysis of a large number of Dl alleles demonstrates the considerable genetic and functional complexity of Dl. Three types of Dl alleles are distinguishable. Most alleles behave as amorphic or hypomorphic recessive embryonic lethal alleles, which in addition cause various defects in heterozygosity over the wild-type allele. The defects are due to haplo-insufficient expression of the locus and can be suppressed by a duplication of the wild-type allele. The second class is comprised of three alleles with antimorphic expression. The phenotype of these alleles can only be reduced, rather than suppressed, by a duplication of the wild-type allele. The third group is comprised of three visible, predominantly hypomorphic alleles with an antimorphic component of phenotypic expression. The pattern of interallelic complementation is complex. On the one hand, there is a group of hypomorphic, fully penetrant embryonic lethal alleles which complement each other. On the other hand, most alleles, including all amorphic alleles, are viable over the visible ones; alleles of antimorphic expression, however, are lethal over visible alleles. These results are compatible with a rather complex genetic organization of the Dl locus.  相似文献   

2.
3.
L. B. Bender  P. J. Kooh    MAT. Muskavitch 《Genetics》1993,133(4):967-978
Delta (Dl) encodes a cell surface protein that mediates cell-cell interactions central to the specification of a variety of cell fates during embryonic and postembryonic development of Drosophila melanogaster. We find that the Delta protein is expressed intermittently in follicle cells and in germ-line cells during stages 1-10 of oogenesis. Furthermore, Delta expression during oogenesis can be correlated with a number of morphogenetic defects associated with sterility observed in Dl mutant females, including failure of stalk formation within the germarium and subsequent fusion of egg chambers, necrosis in germ-line cells, and multiphasic embryonic arrest of fertilized eggs. We have also identified a Dl mutation that leads to context-dependent defects in Dl function during oogenesis. Direct comparison of Delta protein expression with that of the Notch protein in the ovary reveals substantial, but incomplete, coincidence of expression patterns in space and time. We discuss possible roles for the Delta protein in cell-cell interactions required for cell fate specification processes during oogenesis in light of available developmental and histochemical data.  相似文献   

4.
5.
6.
In the ciliated protozoan, Tetrahymena thermophila, the diploid germinal micronucleus contains two allelic copies of the gene for ribosomal RNA (rDNA). During genesis of new somatic macronuclei the germline rDNA gene is excised by developmentally programmed chromosome breakage and preferentially amplified to ∼9,000 copies. We have studied this process by fluorescence in situ hybridization. We find that initially rDNA amplification is restricted to two separate and highly confined regions of the nucleus. Analysis of nuclei that are hemizygous for the rDNA locus reveals that each focus of hybridization is derived from a single allele of the rDNA. As rDNA amplification progresses these two foci of hybridization disperse and spread throughout the macronucleus, eventually forming ∼100–500 new nucleoli. These events are correlated with morphologically distinct developmental stages. We investigated the amplification of the C3 allele of the rDNA that confers a replication advantage over the B allele during vegetative propagation, and find no evidence for preferential amplification of the C3 early in rDNA maturation. We also show that the rmm 11 rDNA mutant allele, which is defective for developmentally programmed rDNA excision, can be amplified during the two-foci stage in mutant homozygotes and heterozygotes, but fails to amplify further and disperse into multiple nucleoli. These data indicate that amplification of the rmm 11 allele is not delayed during the initial rounds of amplification, and suggest that efficient excision is not required for this amplification to occur. We propose that rDNA amplification is a two-step process. First, the two rDNA alleles are independently amplified, while allelic copies remain closely associated. Later, copies of the rDNA disperse and are further amplified, presumably because rDNA excision has occurred, generating fully mature rDNA minichromosomes that are able to replicate to high copy number. Received: 21 February 1997; in revised form: 21 April 1997 / Accepted: 5 May 1997  相似文献   

7.
8.
The precursor-mRNA transcribed from the chicken apo very low density lipoprotein II gene was identified. This gene which is under full estrogen control and only expressed in the liver, possesses three introns. Splicing intermediates were characterized by hybridization with intron-specific probes, and by electron microscopy of R-loops. The introns appear to be excised in a non-obligatory order, but at different rates.  相似文献   

9.
The nature of forces maintaining variation for quantitative traits can only be assessed at the level of individual genes affecting variation in the traits. Identification of single-nucleotide polymorphisms (SNPs) associated with variation in Drosophila sensory bristle number at the Delta (Dl) locus provides us with the opportunity to test a model for the maintenance of variation in bristle number by genotype by environment interaction (GEI). Under this model, genetic variation is maintained at a locus under stabilizing selection if phenotypic values of heterozygotes are more stable than homozygotes across a range of environments, and the mean allelic effect is much smaller than the standard deviation of allelic effects across environments. Homozygotes and heterozygotes for two SNPs at Dl, one affecting sternopleural and the other abdominal bristle number, were reared in five different environments. There was significant GEI for both bristle traits. Neither condition of the model was satisfied for Dl SNPs exhibiting GEI for sternopleural bristle number. Heterozygotes for the abdominal bristle number SNPs were indeed the most stable genotype for two of the three environment pairs exhibiting GEI, but the mean genotypic effect was greater than the standard deviation of effects across environments. Therefore, this mechanism of GEI seems unlikely to be responsible for maintaining the common bristle number polymorphisms at Dl.  相似文献   

10.
11.
We have conducted a genetic analysis of a small interval of the third chromosome known to include Delta (Dl), a locus that affects the segregation of the ectoderm into neural and epidermal lineages during embryogenesis and the morphogenesis of some ectodermally derived structures, in Drosophila melanogaster. This analysis has led to the definition of seven independent complementation groups, one of which is Delta, within the interval extending from 91F6-13 to 92A2. Among the extant mutations in these seven loci, only mutations in Dl lead to the so-called neurogenic phenotype: hypertrophy of the nervous system and reduction of the epidermis. Combined cytogenetic and genetic analyses allow us to define absolute proximal (91F5-92A1) and distal (92A2) cytogenetic limits for the Dl locus. We have isolated hypomorphic and amorphic alleles of Dl and find that, for any given allele, there is an inverse correlation between neural hypertrophy and epidermal reduction in embryos and a direct correlation between the severity of embryonic phenotypes in mutant homozygotes and hemizygotes and the imaginal phenotype in heterozygous adults.  相似文献   

12.
13.
The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ hybridization. In fully condensed, mature sperm nuclei, the telomere sequences appeared as discrete spots of various sizes interspersed throughout the volume of the nuclei. While the pattern of these signals was non-random, it varied significantly in different nuclei. These discrete telomere foci were seen to gradually lengthen into linear, beaded signals as sperm nuclei were decondensed, in vitro, and were not associated with the nuclear annulus. We also examined the relationship of telomeres to the sperm nuclear matrix, a residual nuclear structure that retains the original size and shape of the nucleus. In these structures the DNA extends beyond the perimeter of the nucleus to form a halo around it, representing the arrangement of the chromosomal DNA into loop domains attached at their bases to the nuclear matrix. Telomere signals in these structures were also linear and equal in length to those of the decondensed nuclei, and each signal represented part of a single DNA loop domain. The telomeres were attached at one end to the nuclear matrix and extended into the halo. Sperm nuclear matrices treated with Eco RI retained the telomere signals. These data support sperm DNA packaging models in which DNA is coiled into discrete foci, rather than spread out linearly along the length of the sperm nucleus.  相似文献   

14.
In situ study of c-myc protein expression during avian development   总被引:7,自引:0,他引:7  
The distribution of the c-myc protein was studied in the developing embryo from the two-somite stage to embryonic day 17 (E17). A triple labelling method was used, with a polyclonal serum recognizing the human and avian c-myc proteins as the first marker followed by Hoechst 33258 for nuclear staining and the monoclonal antibody 13F4 which reveals the avian myogenic lineage. In situ hybridization was carried out at three selected stages (E3, E6 and E8), in order to compare the distribution of myc mRNA and myc protein. The c-myc protein signal was barely detectable in blastodisc nuclei during the period of somite formation, after which it became ubiquitous in the embryonic body until E4. Myotomal cell nuclei displayed a strong signal until their organization into premuscular masses. On day 4, the level of c-myc protein decreased in all embryonic tissues. By doubling the antibody titre and amplifying the signal by means of the streptavidin-biotin method, c-myc could still be detected in nuclei of defined groups of cells. Such was the case in some mesenchyme-derived tissues at critical periods of organogenesis, for instance in prechondrogenic condensations or hemopoietic cell foci at E6, the latter becoming negative at E9. The heart ventricle displayed a patch-work of positive and negative nuclei from E6 to E10. A myc signal restricted to the quail species was found in the wall of the carotid arteries. Cell nuclei in the nervous system displayed a detectable signal which became restricted to postmitotic neurones. In the ectoderm, the c-myc protein was generally not present after E4, except in presumptive feather buds at the time of epitheliomesenchymal interactions. Endodermal cells (such as hepatocytes, oesophageal and tracheal epithelia) did not express detectable levels of c-myc at any time. Our results reveal a time- and tissue-specific expression of c-myc during avian development. It is noteworthy that the expression of the c-myc protein often appears dissociated from cell proliferation as shown by the absence of the signal in endodermal cells at E3-E13 as well as its presence in postmitotic neurones. Finally, although RNA and protein are simultaneously detected in some structures such as presumptive feather buds, their expression is dissociated in endodermal tissues, notably hepatocytes, where in situ hybridization detects a large number of RNA copies with no detectable protein signal.  相似文献   

15.
16.
An open question in meiosis is whether the Rad51 recombination protein functions solely in meiotic recombination or whether it is also involved in the chromosome homology search. To address this question, we have performed three-dimensional high-resolution immunofluorescence microscopy to visualize native Rad51 structures in maize male meiocytes. Maize has two closely related RAD51 genes that are expressed at low levels in differentiated tissues and at higher levels in mitotic and meiotic tissues. Cells and nuclei were specially fixed and embedded in polyacrylamide to maintain both native chromosome structure and the three dimensionality of the specimens. Analysis of Rad51 in maize meiocytes revealed that when chromosomes condense during leptotene, Rad51 is diffuse within the nucleus. Rad51 foci form on the chromosomes at the beginning of zygotene and rise to approximately 500 per nucleus by mid-zygotene when chromosomes are pairing and synapsing. During chromosome pairing, we consistently found two contiguous Rad51 foci on paired chromosomes. These paired foci may identify the sites where DNA sequence homology is being compared. During pachytene, the number of Rad51 foci drops to seven to 22 per nucleus. This higher number corresponds approximately to the number of chiasmata in maize meiosis. These observations are consistent with a role for Rad51 in the homology search phase of chromosome pairing in addition to its known role in meiotic recombination.  相似文献   

17.
Summary The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed.  相似文献   

18.
MacPhail, S. H. and Olive, P. L. RPA Foci are Associated with Cell Death after Irradiation. Radiat. Res. 155, 672-679 (2001). Complexes containing replication protein A (RPA) were observed in human TK6 and WIL-2NS lymphoblast cells and SiHa cervical carcinoma cells exposed to 250 kV X rays. Image analysis of individual cells with fluorescence-tagged anti-RPA antibodies was used to measure numbers of discrete foci per cell. RPA foci formed in S-phase cells in response to radiation doses as low as 0.5 Gy, and the number of foci/nucleus was linearly related to dose up to 50 Gy. The maximum number of cells with foci occurred 4-8 h after exposure to 4 Gy, and subsequently declined. However, the number of RPA foci per nucleus (in those cells with foci) reached a maximum after 2-4 h. Apoptotic nuclei from irradiated TK6 and WIL-2NS cells initially contained foci, but these were lost as degradation continued. Radiation-induced micronuclei in SiHa cells were greatly enriched for RPA foci, and cells with nuclei without foci often contained micronuclei with multiple RPA foci. In SiHa cells examined up to 7 days after 4 Gy, RPA foci reappeared in one or more cells in up to 90% of the surviving colonies, and some cells contained 150 or more distinct foci. Reappearance of these complexes could be indicative of radiation-induced genomic instability. These results are consistent with the idea that RPA foci observed several hours after irradiation represent irreparable lesions and as such might be useful in identifying radiosensitive cells.  相似文献   

19.
Lateral inhibition mediated by Delta/Notch (Dl/N) signaling is used throughout development to limit the number of initially equivalent cells that adopt a particular fate [1], [2] and [3]. Although adjacent cells express both Dl ligand and N receptor, signaling between them ultimately occurs in only one direction. Classically, this has been explained entirely by feedback: activated N can downregulate Dl, amplifying even slight asymmetries in the Dl or N activities of adjacent cells [1], [2], [3], [4] and [5]. Here, however, we present an example of lateral inhibition in which unidirectional signaling depends instead on Dl's ability to inhibit N within the same cell, a phenomenon known as cis-inhibition [6], [7], [8], [9], [10] and [11]. By genetically manipulating individual R1/R6/R7 photoreceptor precursors in the Drosophila eye, we show that loss of Dl-mediated cis-inhibition reverses the direction of lateral signaling. Based on our finding that Dl in R1/R6s requires endocytosis to trans-activate but not to cis-inhibit N, we reexamine previously published data from other examples of lateral inhibition. We conclude that cis-inhibition generally influences the direction of Dl/N signaling and should therefore be included in standard models of lateral inhibition.  相似文献   

20.
Analysis of the development of Delta (Dl) temperature-sensitive mutants pulsed at restrictive temperature during larval and pupal stages reveals multiple phenocritical periods during which reduction of Dl function affects viability and development of adult structures. Dl function is required during the third larval instar for post-pupal viability and during the first day of pupal development for viability through eclosion. Dl function is required biphasically for the development of sensory bristles. Earlier pulses lead to bristle multiplication and later pulses lead to bristle loss. The exact intervals during which multiplication and loss are induced vary for different bristles. Dl function is also required for development of most, if not all, cell types in the retina. Different pulses result in reduction in eye size, scarring, and glossiness, as well as multiplication and loss of interommatidial bristles. We also define intervals during which Dl function is required for aspects of leg and wing development. Phenocritical periods for Dl function are temporally coincident with those previously reported for Notch (N), consistent with the hypothesis that the proteins encoded by Dl and N interact throughout development to assure correct specification of cell fates in a variety of imaginal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号