首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ObjectiveThe endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.MethodsNine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR).ResultsA median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001).ConclusionThis state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.  相似文献   

2.
The regulation of vascular tone, vascular permeability, and thromboresistance is essential to maintain blood circulation and therefore tissue environments under physiological conditions. Atherogenic stimuli, including diabetes, dyslipidemia, and oxidative stress, induce vascular dysfunction, leading to atherosclerosis, which is a key pathological basis for cardiovascular diseases such as ischemic heart disease and stroke. We have proposed a novel concept termed "vascular failure" to comprehensively recognize the vascular dysfunction that contributes to the development of cardiovascular diseases. Vascular endothelial cells form the vascular endothelium as a monolayer that covers the vascular lumen and serves as an interface between circulating blood and immune cells. Endothelial cells regulate vascular function in collaboration with smooth muscle cells. Endothelial dysfunction under pathophysiological conditions contributes to the development of vascular dysfunction. Here, we address the barrier function and microtubule function of endothelial cells. Endothelial barrier function, mediated by cell-to-cell junctions between endothelial cells, is regulated by small GTPases and kinases. Microtubule function, regulated by the acetylation of tubulin, a component of the microtubules, is a target of atherogenic stimuli. The elucidation of the molecular mechanisms of endothelial dysfunction as a cellular mechanism for vascular failure could provide novel therapeutic targets of cardiovascular diseases.  相似文献   

3.
Pro-opiomelanocortin (POMC) is the precursor of several neuropeptides, such as corticotropin (ACTH), alpha-melanocyte-stimulating hormone (MSH), and the endogenous opioid, beta-endorphin (EP). ACTH-dependent Cushing's syndrome is characterized by ACTH overproduction and is associated with an increased risk of cardiovascular disease. Endothelial dysfunction has been recognized as an early marker of cardiovascular disease. However, the mechanism underlying endothelial dysfunction by ACTH overexpression in Cushing's patients remains elusive. Endothelial cells, the primary cells producing endothelin (ET)-1, are both the source and target of POMC-derived peptides. In the present study, we generated adenovirus vectors (Ad) encoding POMC (Ad-POMC) and green fluorescent protein (GFP; Ad-GFP) to investigate whether POMC gene transfer altered the ET-1 homeostasis and angiogenic functions in human EA.hy926 endothelial cells. Via adenovirus gene delivery, the POMC-transduced EA.hy926 cells released significantly elevated ACTH and beta-EP levels (P < 0.001). In addition, POMC gene delivery significantly decreased the ET-1 release (P < 0.001) without affecting the ET-1 messenger RNA (mRNA) level. Despite no effect on the secretion of matrix metalloproteinases (MMPs) and cell proliferation, POMC gene delivery significantly inhibited the migration (P < 0.01) and tube-forming capability (P < 0.01) of endothelial cells. Moreover, the POMC-induced inhibition of tube formation could be partially reversed by adding exogenous ET-1 (P < 0.05). In summary, the attenuated ET-1 release and angiogenic processes by POMC overexpression may contribute to endothelial dysfunction, thereby providing a link between Cushing's syndrome and cardiovascular diseases.  相似文献   

4.
5.
6.
Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC). HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC), and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.  相似文献   

7.
C-reactive protein (CRP) is significantly associated with the risk of ischemic cardiovascular disease in epidemiological studies. To explore if CRP has a functional role, we investigated its effect on the gene expression profile of vascular endothelial cells. Human vascular endothelial cells (human umbilical vein endothelial cells and human aortic endothelial cells) were incubated with CRP at various concentrations (0-10 mug/ml). Microarray analysis showed that a total of 11 genes increased (IL-8, core promoter element binding protein, activin A, monocyte chemoattractant protein 1, Exostoses 1, Cbp/p300-interacting transactivator with Glu/Asp-rich COOH-terminal domain 2, plasminogen activator inhibitor 1, fibronectin-1, gravin, connexin43, and sortilin-related receptor-1) and 6 genes decreased (methionine adenosyltransferase 2A, tryptophan-rich basic protein, reticulocalbin 1, membrane-associated RING-CH protein VI, cytoplasmic dynein1, and annexin A(1)) by more than twofold for their mRNA levels. IL-8 was the most significantly upregulated gene (13.6-fold), which demonstrated a clear dose- and time-dependent pattern revealed by quantitative real-time PCR. Cell adhesion assay showed that CRP enhanced the monocyte adhesion to endothelial cell monolayer by 2-fold (P < 0.01), which was partially blocked by an anti-IL-8 antibody (34.2% inhibition, P < 0.01). Inhibition of ERK MAPK pathway using U0126 prevented CRP-induced IL-8 upregulation, and Western blot analysis revealed a rapid activation of ERK1/2 after CRP stimulation. These data showed that CRP can significantly influence gene expressions in vascular endothelium. The CRP-responsive genes suggested that CRP may have a broad functional role in cell growth and differentiation, vascular remodeling and solid tumor development.  相似文献   

8.
PURPOSE OF REVIEW: Endothelial dysfunction plays a crucial role in the pathogenesis of atherosclerosis and related cardiovascular diseases. Glucotoxicity, lipotoxicity, and inflammation all independently contribute to development of both endothelial dysfunction and insulin resistance. We review pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance and recent insights from therapeutic interventions to improve both metabolic and vascular function. RECENT FINDINGS: Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation interact at multiple levels creating reciprocal relationships between insulin resistance and endothelial dysfunction that help to explain frequent clustering of metabolic and cardiovascular disorders. Metabolic abnormalities implicated in the development of insulin resistance, including hyperglycemia, elevated levels of free fatty acids, accumulation of advanced glycation end products, dyslipidemias, and decreased levels of adiponectin, also contribute importantly to endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously improve endothelium-dependent vascular function, reduce inflammation, and improve insulin sensitivity by both distinct and interrelated mechanisms. SUMMARY: Pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance contribute to clustering of metabolic and cardiovascular diseases represented by the metabolic syndrome. Therapeutic interventions that target endothelial dysfunction or insulin resistance often simultaneously improve both metabolic and vascular function.  相似文献   

9.
Endothelial cells are among the main physiological targets of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In endothelial cells TNF-alpha elicits a broad spectrum of biological effects including differentiation, proliferation and apoptosis. alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteases plays a vital role in protecting host tissue from proteolytic injury at sites of inflammation. Recently, it has been shown that AAT can be internalized by pulmonary endothelial cells, raising speculation that it may modulate endothelial cell function in addition to suppressing protease activity. Using Affymetrix microarray technology, real time PCR and ELISA methods we have investigated the effects of AAT on un-stimulated and TNF-alpha stimulated human primary lung microvascular endothelial cell gene expression and protein secretion. We find that AAT and TNF-alpha generally induced expression of distinct gene families with AAT exhibiting little activity in terms of inflammatory gene expression. Approximately 25% of genes up regulated by TNF-alpha were inhibited by co-administration of AAT including TNF-alpha-induced self expression. Surprisingly, the effects of AAT on TNF-alpha-induced self expression was inhibited equally well by oxidized AAT, a modified form of AAT, which lacks serine protease inhibitor activity. Overall, the pattern of gene expression regulated by native and oxidized AAT was similar with neither inducing pro-inflammatory gene expression. These findings suggest that inhibitory effects of native and oxidized forms of AAT on TNF-alpha stimulated gene expression may play an important role in limiting the uncontrolled endothelial cell activation and vascular injury in inflammatory disease.  相似文献   

10.
目的:克隆并验证内皮细胞(Endothelial Cells,ECs)特异性启动子,为转染人胚胎干细胞(h ESC)后实时监测ECs的定向分化情况以及利用干细胞实施血友病A的基因治疗研究提供基础。方法:通过酶消化法原代分离人脐静脉内皮细胞(HUVECs),结合RT-PCR和免疫荧光验证分离后的HUVECs表达内皮细胞特异性标志基因血管性血友病因子(v WF)和血管内皮钙粘素(VE-cadherin/CDH5)。抽提HUVECs的g DNA,通过PCR扩增内皮细胞特异性表达基因v WF和VE-cadherin转录起始位点上游不同大小的启动子片段,将其取代报告基因载体p EGFP-N1中的广谱启动子CMV,构建4个质粒,即pv WF-1、pv WF-2、p VE-1、p VE-2,分别转染HUVECs和h ESCs,48 h后观察并比较各启动子片段启动绿色荧光蛋白GFP表达情况,筛选最具特异性及转录活性的启动子片段。结果:通过酶消化法,本研究成功分离出具有典型上皮样细胞的HUVECs。RT-PCR和免疫荧光结果表明HUVECs特异性表达v WF和VE-cadherin。酶切及测序证实所构建的4个含ECs特异性启动子片段的质粒与理论序列相符,通过核转染至HUVECs及h ESCs后,48 h后观察到所克隆的VE-cadherin 2105bp启动子片段具有内皮细胞表达的特异性和较强的转录活性。结论:本研究成功筛选出具有内皮细胞表达特异性及较强转录活性的启动子片段。  相似文献   

11.
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. We here report that treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor (TNF) α substantially increased the expression of MCP-induced protein 1 (MCPIP1). Overexpression of MCPIP1 protected ECs against TNFα-induced endothelial activation, as characterized by the attenuation in the expression of the adhesion molecule VCAM-1 and monocyte adherence to ECs. Conversely, small interfering RNA-mediated knock down of MCPIP1 increased the expression of VCAM-1 and monocytic adherence to ECs. These studies identified MCPIP1 as a feedback control of cytokines-induced endothelial inflammation.  相似文献   

12.
13.
14.
15.
Chronic kidney disease is linked to systemic inflammation and to an increased risk of ischemic heart disease and atherosclerosis. Endothelial dysfunction associates with hypertension and vascular disease in the presence of chronic kidney disease but the mechanisms that regulate the activation of the endothelium at the early stages of the disease, before systemic inflammation is established remain obscure. In the present study we investigated the effect of serum derived from patients with chronic kidney disease either before or after hemodialysis on the activation of human endothelial cells in vitro, as an attempt to define the overall effect of uremic toxins at the early stages of endothelial dysfunction. Our results argue that uremic toxins alter the biological actions of endothelial cells and the remodelling of the extracellular matrix before signs of systemic inflammatory responses are observed. This study further elucidates the early events of endothelial dysfunction during toxic uremia conditions allowing more complete understanding of the molecular events as well as their sequence during progressive renal failure.  相似文献   

16.
Microarray technology has become a standard tool for generation of gene expression profiles to explore human disease processes. Being able to start from minute amounts of RNA extends the fields of application to core needle biopsies, laser capture microdissected cells, and flow-sorted cells. Several RNA amplification methods have been developed, but no extensive comparability and concordance studies of gene expression profiles are available. Different amplification methods may produce differences in gene expression patterns. Therefore, we compared profiles processed by a standard microarray protocol with three different types of RNA amplification: (i) two rounds of linear target amplification, (ii) random amplification, and (iii) amplification based on a template switching mechanism. The latter two methods accomplish target amplification in a nonlinear way using PCR technology. Starting from as little as 50 ng of total RNA, the yield of labeled cRNA was sufficient for hybridization to Affymetrix HG-U133A GeneChip array using the respective methods. Replicate experiments were highly reproducible for each method. In comparison with the standard protocol, all three approaches are less sensitive and introduced a minor but clearly detectable bias of the detection call. In conclusion, the three amplification protocols used are applicable for GeneChip analysis of small tissue samples.  相似文献   

17.
血管内皮细胞特异表达Cre重组酶转基因小鼠的建立   总被引:4,自引:0,他引:4  
血管内皮细胞参与血管形成、血管稳态维持、血栓形成、炎症和血管重建等生理和病理过程。为了便于通过Cre-LoxP系统研究相关基因在血管内皮细胞中的功能,创建了Tie2-Cre转基因小鼠,利用Tie2基因的启动子驱动Cre重组酶基因在血管内皮细胞中表达。经基因组PCR和Southern Blot鉴定有6只小鼠在基因组上整合有Cre基因,整合率为11%。为了验证Cre重组酶的剪切活性和表达组织分布,我们将Tie2-Cre转基因小鼠分别与Smad4条件基因打靶小鼠和报告小鼠ROSA26交配。Tie2-Cre;Smad4^co/+小鼠的多个组织的基因组DNA的PCR结果显示,Cre重组酶在所有包含血管内皮细胞的组织中表达并能介导LoxP间的重组。Tie2-Cre;ROSA26双转基因胚胎LacZ染色结果显示,Cre重组酶在所有被检测组织的血管内皮细胞中特异性表达。因此.Tie2-Cre转基因小鼠可作血管内皮细胞谱系分析和在血管内皮细胞进行条件基因打靶的理想工具小鼠。  相似文献   

18.
The functionality of endothelial cells is fundamental for the homoeostasis of the vascular system. Increasing evidence shows that endothelial inflammation and senescence contribute greatly to multiple vascular diseases including atherosclerosis. However, little is known regarding the complex upstream regulators of gene expression and translation involved in these responses. MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. During the past few years, miRNAs have emerged as key regulators for endothelial biology and function. Endothelial inflammation is critically regulated by miRNAs such as miR-126 and miR-10a in vitro and in vivo. Endothelial aging is additionally controlled by miR-217 and miR-34a. In this review, we summarize the role of miRNAs and their target genes in endothelial inflammation and senescence, and discuss their applicability as drug targets.  相似文献   

19.
C-reactive protein (CRP), a predictor of future cardiovascular diseases, has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation. This proatherogenic CRP was speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs), possibly impairing vascular regeneration and increasing cardiovascular vulnerability to ischemic injury. Herein, we investigated the direct effect of CRP on angiogenic activity and gene expression in human EPCs. Incubation of EPCs with human recombinant CRP significantly inhibited EPC migration in response to vascular endothelial growth factor, possibly by decreasing the expression of endothelial nitric oxide synthase and subsequent nitric oxide production. In addition, CRP-treated EPCs showed the reduced adhesiveness onto an endothelial cell monolayer. When assayed for the gene expression of arteriogenic chemo-cytokines, CRP substantially decreased their expression levels in EPC, in part due to the upregulation of suppressors of cytokine signaling proteins. These results suggest that CRP directly attenuates the angiogenic and possibly arteriogenic functions of EPCs. This CRP-induced EPC dysfunction may impair the vascular regenerative capacity of EPCs, thereby leading to increased risk of cardiovascular diseases.  相似文献   

20.
目的:研究高糖诱导的内皮细胞损伤微小RNA(microRNA,miRNA)的表达变化。方法:常规培养的人冠状动脉内皮细胞,利用不同浓度D-葡萄糖溶液(0 mmol/L、5 mmol/L、15 mmol/L和25 mmol/L),诱导刺激24 h后分别用CCK-8法和流式细胞术检测其生长活力和凋亡水平。收集细胞总RNA,利用实时定量PCR(Quantitative real-time PCR,q RT-PCR)检测miRNA的表达变化,同时利用TargetScan、PicTar等生物信息学预测软件预测可能的靶基因。结果:高糖溶液(25 mmol/L)刺激内皮细胞后,细胞生长活力明显降低,为对照组的67.5%(P0.01),凋亡水平为对照组的4.5倍(P0.01)。QRT-PCR结果显示miRNA的表达出现了明显的紊乱,其中miR-451、miR-504、miR-302d、miR-18b*、miR-198、miR-328和miR-517c明显下调,miR-29c、miR-100*、miR-137、miR-660和miR-217明显上调(P0.05)。靶基因预测发现miR-217和miR-451可能调控内皮细胞功能相关的多个基因的表达。结论:在高糖诱导的内皮细胞损伤中,miRNA表达紊乱提示其可能参与内皮细胞功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号