首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for determination of scopoletin in rat plasma using psoralen as internal standard. Chromatographic separation was achieved on a C(18) column using methanol and distilled water (49:51, v/v) containing 0.05% (v/v) phosphoric acid as mobile phase. The UV detector was set at 345 nm. The calibration curve was linear over the range of 0.165-9.90 microg/ml with a correlation coefficient of 0.9994. The recovery for plasma samples of 0.165, 1.32 and 6.60 microg/ml was 93.2%, 95.9% and 95.5%, respectively. The RSD of intra- and inter-day assay variations was less than 6.7%. This HPLC assay is a precise and reliable method for the analysis of scopoletin in pharmacokinetic studies.  相似文献   

2.
In this research project, a high-performance liquid chromatography (HPLC) method was developed for the determination of acyclovir (ACV) in plasma. The plasma samples, recharged with acyclovir and in presence of 5'-N-methylcarboxyamidoadenosine (MECA) as an internal standard, were purified using a solid-phase extraction technique with Waters Oasis HLB columns. The separation of the components from the extract was carried out in a LiChrospher 100 RP-18 column for further ultraviolet detection at a wavelength range of 250-260 nm. The mobile phase composition was 18% acetonitrile, sodium dodecylsulphate 5 mM and phosphate buffer at pH 2.6 with an analysis time of 13 min per sample. The average retention time for acyclovir was of 5.0 min and for the internal standard 11.2 min. The calibration curve was linear ranging between 0.05 and 1.80 microg/ml. The detection limit was 0.006 microg/ml with a quantification limit of 0.020 microg/ml. The ACV recuperation percentage for 250 microl of plasma was between 94.7 and 109.7% with a coefficient of variation not higher than 5.2%. This method was developed and validated for use in bioavailability and bioequivalence studies.  相似文献   

3.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

4.
A simple, rapid, sensitive and reliable high performance liquid chromatography (HPLC) method for the determination of the anti-ulcer drug sofalcone in human plasma was developed. Plasma was extracted with ethyl acetate under acidic conditions and sofalcone was determined by HPLC using a C18 column and (methanol-0.1% formic acid aqueous 80:20) mobile phase. The linear calibration curves of sofalcone in human plasma were obtained over the concentration range of 0.01-5.0 microg/ml. The lower limit of quantitation (LLOQ) was 10 ng/ml in human plasma. The precision measured for plasma was within 15%. Extraction recovery was over 85% in blood. The method was successfully applied to the identification and quantification of sofalcone in pharmacokinetic studies.  相似文献   

5.
Liquid chromatographic assay for dicloxacillin in plasma   总被引:2,自引:0,他引:2  
A simple high-performance liquid chromatographic method for the determination of dicloxacillin in plasma has been developed. The method only requires 0.5 ml of plasma, phosphate buffer solution (pH = 4.7), acidification with 0.5N hydrochloride acid and liquid extraction with dichloromethane. Posterior evaporation of organic under nitrogen steam and redissolution in mobile phase is carried out. The analysis was performed on a Spherisorb C18 (5 microm) column, using methanol -0.05 M phosphate buffer, pH = 4.7 (75:25; v/v) as mobile phase, with ultraviolet detection at 220 nm. Results showed that the assay is sensitive: 0.5 microg/ml. The response is linear in the range of 0.5 - 10 microg/ml. Maximum inter-day coefficient of variation was 12.4%. Mean extraction recovery obtained was 96.95%. Stability studies showed that the loss was not higher than 10%, samples are stable at room temperature for 6 h, at -20 Celsius for 2 months, processed samples were stable at least for 24 h and also after two freeze-thaw cycles. The method has been used to perform pharmacokinetic and bioequivalence studies in humans.  相似文献   

6.
A high performance liquid chromatography (HPLC) method for the estimation of pravastatin in human plasma and urine samples has been developed. The preparation of the samples was performed by automated solid phase extraction using clonazepam as internal standard. The compounds were separated by isocratic reversed-phase HPLC (C(18)) and detected at 239 nm. The method was linear up to concentrations of 200 ng/ml in plasma and 2000 ng/ml in urine. The intra-assay variability for pravastatin in plasma ranged from 0.9% to 3.5% and from 2.5% to 5.3% in urine. The inter-assay variability ranged from 9.1% to 10.2% in plasma and from 3.9% to 7.5% in urine. The validated limits of quantification were 1.9 ng/ml for plasma and 125 ng/ml for urine estimation. These method characteristics allowed the determination of the pharmacokinetic parameters of pravastatin after administration of therapeutic doses.  相似文献   

7.
A simple high-performance liquid chromatographic (HPLC) method has been developed for the determination of epimedin C in rat plasma and applied to a pharmacokinetic study in rats after administration of Herba Epimedii extract. After addition of carbamazepine as an internal standard plasma samples were extracted with ethyl acetate. HPLC analysis of the extracts was performed on a Hypersil ODS2 analytical column using acetonitrile -0.4% acetic acid (25:75, v/v) as the mobile phase. The UV detector was set at 260 nm. The standard curve was linear over the range 0.05-4.0 microg/mL. The lower limit of quantification was 0.05 microg/mL. The HPLC method developed could be easily applied to the determination and pharmacokinetic study of epimedin C in rat plasma after giving the animals Herba Epimedii extract.  相似文献   

8.
An isocratic and sensitive HPLC assay was developed allowing the determination of the new anticancer drug nilotinib (AMN107) in human plasma, urine, culture medium and cell samples. After protein precipitation with perchloric acid, AMN107 underwent an online enrichment using a Zirchrom-PBD precolumn, was separated on a Macherey-Nagel C18-HD column and finally quantified by UV-detection at 258 nm. The total run time is 25 min. The assay demonstrates linearity within a concentration range of 0.005-5.0 microg/ml in plasma (r(2)=0.9998) and 0.1-10.0 microg/ml in urine (r(2)=0.9913). The intra-day precision expressed as coefficients of variation ranged depending on the spiked concentration between 1.27-9.23% in plasma and 1.77-3.29% in urine, respectively. The coefficients of variation of inter-day precision was lower than 10%. Limit of detection was 0.002 microg/ml in plasma and 0.01 microg/ml in urine. The described method is stable, simple, economic and is routinely used for in vivo and in vitro pharmacokinetic studies of AMN107.  相似文献   

9.
A HPLC method for determination of trans-resveratrol concentrations in rat plasma was developed. Plasma samples were treated with acetonitrile to deposit proteins. The analysis used a Hypersil ODS(2) C(18) column (5 microm, 4.6 mm x 250 mm) and methanol/distilled water as the mobile phase (flow-rate=1 mL/min). The UV detection wavelength was 303 nm, and chlorzoxazone was used as the internal standard. The calibration curve was linear over the range of 0.02-40 microg/mL with a correlation coefficient of 0.9997. This concentration range corresponds well with the plasma concentrations of resveratrol in pharmacokinetic studies. There was 98.7%, 91.3% and 84.4% recovery from 0.02, 0.4 and 40 microg/mL plasma samples respectively. The R.S.D. of intra- and inter-day assay variations were all less than 12%. This HPLC assay is a quick, precise and reliable method for the analysis of resveratrol in pharmacokinetic studies.  相似文献   

10.
An analytical method for simultaneous determination of erythromycin propionate and its active metabolite, erythromycin base, in human plasma by high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS) was developed and validated. Roxithromycin was selected as the internal standard. The samples were directly injected after simple deproteinized procedure only. The separation was achieved on a Johnson Spherigel analytical column packed with 5 microm C18 silica, employing acetonitrile -0.1% formic acid aqueous solution (50:50) as mobile phase. The quantification of target compounds was obtained by using a selected ion monitoring (SIM) at m/z 790.7 for erythromycin propionate, m/z 734.7 for erythromycin base and m/z 837.8 for roxithromycin. The correlation coefficients of the calibration curves were better than 0.997 (n=6), in the ranges from 2 ng/ml to 1 microg/ml, and from 1 to 10 microg/ml for erythromycin propionate and base. The method can provide the necessary sensitivity, precision and accuracy to allow the simultaneous determination of both compounds in a patient's plasma following a single administration of erythromycin stinoprate capsule (500 mg erythromycin base equivalent).  相似文献   

11.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

12.
A simple, sensitive and reliable HPLC ion-pairing method with fluorescence detection, was developed for penciclovir determination in plasma and aqueous humor, with a Zorbax SB-aq C18 (100 mmx2.1 mm) column. Plasma samples were treated by solid-phase extraction with Oasis MCX (30 mg) cartridges. Ganciclovir, an antiviral drug structurally related to penciclovir, was used as internal standard (I.S.). Aqueous humor samples were directly injected into the chromatographic system. Separation was performed by a gradient elution with a mobile phase consisting of a mixture of acetonitrile and phosphate buffer 50mM containing 5mM of sodium octanesulfonate, pH 2.0, at a flow rate of 0.3 ml/min. The method was validated and showed good performances in terms of linearity, sensitivity, precision and trueness. Quantification limit was obtained at 0.05 microg/ml for aqueous humor and at 0.1 microg/ml for plasma. Finally, the proposed analytical method was used to measure penciclovir in clinical samples for a pharmacokinetic study, after oral administration of famciclovir.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method was developed using solid-phase extraction, o-phthalaldehyde (OPA) derivatization and fluorescence detection for the determination of the direct thrombin inhibitor bivalirudin in human plasma and urine. The use of this assay will facilitate the study of the pharmacodynamics of bivalirudin in studies of special patient populations. A C(18) bioanalytical column at a flow rate of 1 ml/min with an aqueous trifluoroacetic acid (0.1% TFA in deionized water, pH 2.2, v/v) mobile phase and methanol gradient was used. The assay demonstrated linearity from 3 to 20 microg/ml bivalirudin in plasma, with a detection limit of 1 microg/ml. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of bivalirudin in patients undergoing percutaneous coronary interventions (PCIs).  相似文献   

14.
A sensitive high-performance liquid chromatographic method for determination of ranitidine (RAN) in rabbit plasma is described. The method is based on liquid-liquid extraction, labeling with dansyl chloride and monitoring with fluorescence detector at 338nm (ex)/523nm (em). Plasma samples were extracted with diethyl ether alkalinized with 1M sodium hydroxide. Ephedrine HCl (EPH-HCl) was used as internal standard. Both, RAN and EPH were completely derivatized after heating at 60 degrees C for 10min in sodium bicarbonate solution (pH 9.5). The derivatized samples were analyzed by HPLC using Agilent Zorbax Extended C18 column (150mmx4.6mm i.d.) and mobile phase consists of 48% acetonitrile and 52% sodium acetate solution (0.02M, pH 4.6). The linearity of the method was in the range of 0.025-10microg/ml. The limits of detection (LOD) and quantification (LOQ) were 7.5+/-0.18 and 22.5+/-0.12ng/ml, respectively. Ranitidine recovery was 97.5+/-1.1% (n=6; R.S.D.=1.8%). The method was applied on plasma collected from rabbits at different time intervals after oral administration of 5mg/kg ranitidine HCl.  相似文献   

15.
We present a specific method for the determination of disodium clodronate in human plasma and urine using a gas-chromatographic system with nitrogen phosphorus detector (NPD). The compound was extracted from plasma and urine samples by an anion-exchange resin and derivatizated with bistrimethylsilyltrifluoroacetamide (BSTFA). Sodium bromobisphosphonate was used as internal standard. The calibration curves were linear in both plasma and urine, with a regression coefficient r > 0.9975 in plasma and r > 0.9977 in urine.The limit of quantitation was 0.3 microg/ml in plasma and 0.5 microg/ml in urine. The method was validated by intra-day assays at three concentration levels. During the study we carried out inter-day assays to confirm the feasibility of the method. The precision in plasma at 0.5, 15, and 45 microg/ml was 12.4, 0.2, and 6.5% (n = 40), respectively; in urine at 0.8, 8, and 40 microg/ml it was 8.6, 6.4, and 9.3% (n = 40), respectively.The method was accurate and reproducible, and was successfully applied to determine the pharmacokinetic parameters of clodronate in healthy volunteers after intravenous infusion and intramuscular injection of 200 mg of the compound. The Cmax after intravenous infusion and intramuscular injection was 16.1 and 12.8 microg/ml, respectively. AUC(0-48 h) after infusion administration and intramuscular injection was 44.2 +/- 18.0 and 47.5 +/- 12.4 h microg/ml, respectively. The elimination half-life in both administrations was 6.31 +/- 2.7 h.  相似文献   

16.
A simple method for the measurement of the active leflunomide metabolite A77 1726 in human plasma by HPLC is presented. The sample workup was simple, using acetonitrile for protein precipitation. Chromatographic separation of A77 1726 and the internal standard, alpha-phenylcinnamic acid, was achieved using a C(18) column with UV detection at 305 nm. The assay displayed reproducible linearity for A77 1726 with determination coefficients (r2) > 0.997 over the concentration range 0.5-60.0 microg/ml. The reproducibility (%CV) for intra- and inter-day assays of spiked controls was <5%. The limit of quantification was 0.8 microg/ml. The average absolute recovery was approximately 100%. This assay is suitable for the determination of A77 1726 in plasma of patients taking leflunomide, and is simpler to use than other HPLC methods reported previously.  相似文献   

17.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of iohexol, iothalamate, p-aminohippuric acid (PAH) and n-acetyl-p-aminohippuric acid (n-acetyl-PAH) in human plasma and urine. A C(18) column at a flow rate of 1 ml/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water (pH 2.2), v/v) and methanol gradient was used for component separation. The plasma and urine assay demonstrated linearity from 10 to 50 microg/ml for iohexol and iothalamate, 5 to 40 microg/ml for PAH and 2.5 to 40 microg/ml for n-acetyl-PAH. The HPLC plasma and urine results obtained for PAH were used to calculate the subject kidney effective renal plasma flow (ERPF) and the iohexol results were used to calculate the subject kidney glomerular filtration rate (GFR). The HPLC results for PAH were then compared to an alternative colorimetric method for analyzing PAH to determine if subject metabolism (acetylation) of PAH affected the ERPF results obtained using the colorimetric method, the subsequent ERPF/GFR ratio and clinical impression of subject patient kidney function. The method was utilized in several different clinical studies evaluating the effect of kidney function from medications (phase IV evaluations) marketed for patients with cardiovascular disease.  相似文献   

18.
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.  相似文献   

19.
A stereoselective reversed-phase HPLC assay to determine S-(-) and R-(+) enantiomers of esmolol in human plasma was developed. The method involved liquid-liquid extraction of esmolol from human plasma, using S-(-)-propranolol as the internal standard, and employed 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The derivatized products were separated on a 5-microm reversed-phase C18 column with a mixture of acetonitrile/0.02 mol/L phosphate buffer (pH 4.5) (55:45, v/v) as mobile phase. The detection of esmolol derivatives was made at lambda=224 nm with UV detector. The assay was linear from 0.035 to 12 microg/ml for each enantiomer. The analytical method afforded average recoveries of 94.8% and 95.5% for S-(-)- and R-(+)-esmolol, respectively. For each enantiomer, the limit of detection was 0.003 microg/ml and the limit of quantification for the method was 0.035 microg/ml (RSD<14%). The reproducibility of the assay was satisfactory.  相似文献   

20.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号