首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual cell fusion occurs between NC4 and HM1, the heterothallic strains in Dictyostelium discoideum. Cells of these strains are fusion incompetent when cultured on agar plates in the light and become fusion competent upon cultivation in a liquid medium in darkness. Two cell-surface components, gp70 and gp138, have been identified and characterized as being relevant to sexual cell fusion. Both are glycoproteins, and the former is detected only in fusion-competent HM1 cells, while the latter is detected both in fusion-competent HM1 and fusion-competent NC4 cells. We therefore suspect gp 70 to be responsible for cell recognition and gp138, for membrane fusion. Therefore, NC4 cells are expected to possess specific surface molecule(s) that can be recognized by HM1 cells. In the present study, we raised monoclonal antibodies (mAbs) against membrane fractions of NC4 cells and selected fusion-inhibiting mAbs to identify novel molecules related to sexual cell fusion in D. discoideum. Out of the five mAbs we obtained three, DE1, GG6, and HH9, were characterized. DE1 recognized antigens that specifically existed in fusion-competent NC4 cells but not in fusion-incompetent NC4 or HM1 cells. GG6 recognized cell-surface proteins with approximate molecular weights of 125 and 32 kDa in both fusion-competent NC4 and fusion-competent HM1 cells. In addition GG6 also recognised other proteins commonly present in fusion-incompetent cells. The 125 kDa protein appeared to be the same as gp138. The epitope recognized by HH9 was sodium dodecyl sulfate (SDS)-sensitive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Dictyostelium discoideum was used as a model system for elucidating the molecular mechanism of sexual cell fusion. In heterothallic strains NC4 and HM1 of D. discoideum, complements in mating type, amoeboid cells acquire fusion competence only under certain environmental conditions, such as the presence of excess water and a certain period of darkness, to fuse sexually. The surface of cells which acquired fusion competence was found to possess specific antigens. Monovalent antibodies prepared from rabbit antiserum against fusion-competent NC4 cells inhibit the sexual cell fusion of these cells completely. Two specific antigenic proteins, 39 and 138 k Da in relative molecular mass and specific for fusion-competent cells, were detected. Only one, the 138-k Da protein, was capable of neutralizing the fusion-inhibitory activity of the monovalent antibody. These results show that the 139-k Da protein is the one involved in the sexual cell fusion of NC4 and HM1 strains in D. discoideum.  相似文献   

3.
In order to analyze the molecular mechanism of sexual cell fusion between cells of HM1 and NC4 (opposite mating type strains in Dictyostelium discoideum ), monoclonal antibodies were raised against partially-purified gp 70, a fusion-related protein of HM1 cells. The antibodies were screened for activity to inhibit cell fusion and 9 hybridoma clones were obtained. One of the fusion-blocking monoclonal antibodies, mAb1G7, was used for further analysis. It recognized nearly ten bands in an immunoblot of fusion competent HM1 cells, but no bands when HM1 membrane proteins had been deglycosylated. These results suggest the importance of carbohydrates in the cell fusion process. To confirm this possibility, effects of sugars or lectins on cell fusion were examined. Although inhibition by the sugars was incomplete, Con A, WGA, LCA, strongly inhibited cell fusion. Furthermore, tunicamycin inhibited the acquisition of fusion competence in HM1 cells, indicating the importance of N-linked glycosylation of proteins in cell fusion. All above results suggest that N-linked carbohydrates on HM1 cell surface are involved in the sexual cell fusion of D. discoideum .  相似文献   

4.
The sexual cycle of Dictyostelium discoideum is initiated by the fusion of cells that are of opposite mating types (e.g. NC4- and HM1-type cells). Cells grown in light on agar plates are not capable of sexual cell fusion, but become capable when cultured in the dark in a liquid medium. Cells in the incapable state are called fusion-incompetent cells, and cells in the latter state, fusion-competent cells. To gain some understanding of the mechanism of cell fusion, cell ghosts prepared by freeze-thawing intact cells were incubated with intact cells. The cell ghosts killed the intact cells by directly fusing with them, the extent of fusion depending on the particular strains employed and the fusion-competency of the intact cells and of the cells from which the cell ghosts had been prepared. A detailed examination revealed that fusion-competent NC4 cells were always more easily killed by cell ghosts than fusion-incompetent NC4 cells. It also became apparent that cell ghosts prepared from fusion-competent NC4 cells killed all cell types far more efficiently than did those prepared from fusion-incompetent NC4 cells. However, fusion-competent and fusion-incompetent HM1 cells were equally sensitive to cell ghosts, and cell ghosts prepared from fusion-competent HM1 cells had the same ability to kill as those prepared from fusion-incompetent HM1 cells. From these findings, it thus appears that opposite mating-type cells have distinct membrane properties related to sexual cell fusion.  相似文献   

5.
The molecular mechanism of sexual cell fusion in Dictyostelium discoideum was studied using the heterothallic strains HM1 and NC4. Monovalent antibodies (Fab) prepared from rabbit antiserum against a crude membrane preparation of fusion-competent HM1 cells inhibited fusion between HM1 and NC4 cells. Six out of 43 antigenic proteins were found in fusion-competent HM1 cells but not in fusion-incompetent cells. Among them, only one protein with a molecular mass of 70 kDa was able to neutralize the fusion-inhibiting activity of Fab, suggesting its possible participation in sexual cell fusion.  相似文献   

6.
Sexual cell fusion in the cellular slime mold Dictyostelium discoideum occurs between cells of opposite (heterothallic system) or same (homothallic system) mating types. It also requires certain environmental conditions such as darkness and abundance of water, and thus offers an interesting model system for analyzing mechanisms of cell recognition and of cellular response to environmental factors. We have been studying the mechanism of sexual cell fusion, using two heterothallic strains, NC4 and HM1 of D. discoideum. Two cell-surface glycoproteins, gp70 and gp138, have been identified as relevant molecules in the cell fusion of these strains. The former is specific to mat a cells (HM1) and the latter, common to both mat a and mat A (NC4). Involvement of cell-surface carbohydrates has also been suggested. However, the fuctions of the above fusion-related molecules are still elusive. In the present study, we isolated fusion-deficient mutants from a mutagenized mat A strain of D. discoideum to set up combined genetic and biochemical analyses. Among the three nonconditional mutants obtained, two were normal in the fruiting-body formation, asexual development, but one was aggregateless ( agg ). Further analysis of these mutants would provide detailed information on the mechanism of sexual cell fusion.  相似文献   

7.
In the heterothallic strains NC4 and HM1 ofDictyostelium discoideum, sexual development is initiated by the formation of diploid zygotic giant cells produced through the fusion of these two opposite mating-type haploid cells. For sexual cell fusion, amoeboid cells must first acquire fusion competence, which requires culture under certain environmental conditions, such as darkness, excessive water, and sufficient bacteria as food. However, in the subsequent stages of cell fusion and development of the giant cells into mature macrocysts, cells do not require the above conditions. Cell fusion and development into macrocysts were able to occur even in light with minimum water and in the absence of bacteria. For cell fusion calcium ions were required.  相似文献   

8.
In the sexual cycle of Dictyostelium discoideum, haploid cells of two opposite mating types, strains HM1 and NC4, acquire fusion-competence under certain conditions, such as suspension culture in the dark, and fuse specifically to form giant zygote cells. Each giant cell engulfs the surrounding cells, gradually increases in size, and finally develops into a macrocyst that is a sexual structure in D. discoideum. Fusion-competent HM1 cells suspended in a solution were frozen and thawed to make cell ghosts. When cell ghosts were introduced into fusion-competent and -incompetent intact NC4 cells, the cell ghosts killed them in a short time, but the fusion-competent cells were killed in preference to the fusion-incompetent cells. This killing occurred through the fusion of the cell ghosts directly to intact cell membranes. Since the fusion was specific, the fusion between ghosts and cells appears to be essentially the same as that between intact cells during the sexual cycle in molecular mechanisms.  相似文献   

9.
The sexual cycle of the cellular slime mold, Dictyostelium discoideum , offers a suitable experimental system to analyze sexual cell interactions. We have been analyzing molecular mechanisms involved in sexual cell fusion using complementary heterothallic strains in D. discoideum and have identified several cell surface proteins involved in the process. One of them, gp138 is present in strains of both mating types and considered to be responsible for membrane fusion itself. Two genes with high mutual homology, GP 138 A and GP 138 B , have been identified so far as encoding this protein. Expression of antisense RNA for GP 138 B has been shown to suppress sexual cell fusion, confirming the critical importance of these genes in sexual cell fusion. However, neither the functional relationship of the two gp138 genes nor the possibility of the existence of more genes that encode gp138 has been determined yet. In the present study, GP 138 A and GP 138 B were disrupted by homologous recombination in an effort to clarify these points. Analysis of the double knock-out mutants suggested the presence of a third gene for gp138.  相似文献   

10.
D. discoideum has two alternative developmental pathways. If cells of two complement mating-type strains, NC4 and HM1, fuse sexually, a giant cell is produced which subsequently develops into a macrocyst, the sexual structure of this organism. However, if fusion fails to occur and cells are starved, a fruiting-body is produced instead of a macrocyst. In this paper, a two-dimensional polypeptide gel electrophoresis study showed that giant cells produce specific polypeptides which may possibly be involved in macrocyst development. Out of total 497 polypeptides which appeared in a giant cell during an incubation period of 13 hr, 92 were the specific for giant cells. Four of these polypeptides were appeared within only 1 hr after the cell fusion. The other 405 were non-specific polypeptides which appeared in both giant cells and NC4 or/and HM1 cells. However, the patterns and the rates of production of each polypeptide during the incubation period were different between these cells.  相似文献   

11.
T Hata  M Takahashi  Y Tanaka  H Urushihara 《Gene》2001,271(1):33-42
The cellular slime mold Dictyostelium discoideum reproduces sexually under submerged and dark conditions. A cell surface glycoprotein gp138 has been identified as a target molecule for cell fusion-blocking antibodies, and is considered to be indispensable for the sexual cell fusion in this organism. Currently, four isoforms of gp138, DdFRP1alpha, DdFRP1beta, DdFRP2, and DdFRP3, are known. Genes encoding the latter three isoforms, GP138C, GP138A, and GP138B, have been isolated, comprising a GP138 multigene family. Here we isolated the fourth GP138 gene, GP138D, encoding DdFRP1alpha. These GP138 genes were found to cluster in a tandem array on chromosome 5, being bordered by two GP138-like sequences highly homologous to them but truncated. To clarify functional relationships among the GP138 family members, the entire GP138 region was deleted by a single knockout. Northern hybridization and western immuno-blotting analyses confirmed complete losses of GP138 mRNA and DdFRPs in the knockout strains, indicating that there are no more GP138 genes. Unexpectedly, however, the GP138-null mutants were fully potent for both sexual cell fusion and subsequent development. In addition, the original fusion-blocking antibodies detected a cell surface protein of close electrophoretic mobility to gp138 in the knockouts, suggesting the possibility that the actual target molecule of the fusion-blocking antibodies was not DdFRPs but this unidentified component. Since GP138-null mutants exhibited no obvious defects either in growth or asexual development, the real function of the GP138 family is unknown. Nevertheless, the expression levels of other developmental genes such as acaA, csaA, cotA-C, and spiA appeared to be altered in the GP138-null mutants. Therefore, it seems to have a non-critical but some role(s) during asexual development.  相似文献   

12.
The sexual development, macrocyst formation, of Dictyostelium discoideum is initiated by sexual fusion of cells. The sexual fusion is only taken place under the culture conditions of excess water and darkness. Under these conditions, cells acquire the fusion competence, but lose it when cell density is high. The loss of the fusion competence is caused by accumulation of ammonia excreted by cells in a culture. Ammonia suppresses the fusion competence of cells at a certain concentration, and consequently inhibits formation of macrocysts and induces fruiting-body formation. Thus, excess water induces the sexual development by diluting ammonia and lack of water induces the asexual development.  相似文献   

13.
Dictyostelium mucoroides -7 (Dm7) and a mutant (MF1) derived from it exhibit homothallic macrocyst formation in the sexual process. As previously shown, the zygote formation during macrocyst formation is induced by a potent plant hormone, ethylene. The present work was undertaken to know if ethylene is also involved in heterothallic and homothallic macrocyst formation in D. discoideum. In heterothallic macrocyst formation between NC4 and V12M2 cells, ethionine, an analogue of methionine, inhibits macrocyst formation through arresting specifically the acquisition process of fusion competence. Such an inhibitory effect of ethionine was almost completely cancelled by co-application of ACC (1-aminocyclopropane-1-carboxylic acid), the immediate precursor of ethylene. Essentially the same effects of ethionine and ACC were also noticed on homothallic macrocyst formation in D. discoideum AC4. Thus it seems most likely that ethylene is required for the acquisition of fusion competence during macrocyst formation, and that in a variety of strains examined there is a common mechanism regulated by ethylene, beyond the difference of sexual modes.  相似文献   

14.
Cell recognition plays a central part in the sexual process. Although cell-surface molecules involved in gamete recognition have been identified in several organisms, our knowledge of the molecular basis of sexual cell recognition is still limited. We have been studying molecular mechanisms of sexual cell fusion using the lower eukaryote Dictyostelium discoideum . There are homothallic, heterothallic, bisexual and asexual strains in D. discoideum , and how they distinguish between each other to find out proper partners is an interesting and important question. However, analytical studies of sexuality in D. discoideum have been carried out mostly on heterothallic strains, and the polymorphism of the mating system has not yet been thoroughly investigated. In the present study, we extended our analysis to the bisexual mating phenomenon paying special attention to the mechanism of self-incompatibility. We showed that a bisexual strain WS2162 was self-incompatible at the step of sexual cell fusion. Results of antibody inhibition of cell fusion and detection of gp138, a cell-fusion-related protein found in heterothallic strains, suggest that a molecular basis for bisexual and heterothallic mating are common. We propose two models to clarify the mechanisms of self- and non-self discrimination in bisexual mating patterns of D. discoideum .  相似文献   

15.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

16.
Sexual Development of Cellular Slime Molds   总被引:1,自引:1,他引:0  
Macrocyst formation represents sexual development of cellular slime molds and begins with fusion between cells of compatible mating types. Homothallic and heterothallic strains as well as bisexual and asexual ones have been described. Macrocyst development requires certain environmental conditions such as darkness and excessive humidity. Sexual cell fusion has been analyzed at a molecular level in Dictyostelium discoideum , and several cell surface proteins related to it have been identified. Some of them are common to both mating types, while others are specific to one or other type. The involvement of cell-surface carbohydrates has also been suggested, though direct evidence for this is still lacking. Macrocyst formation is regulated by diffusible, pheromone like substances. Genetic studies on sexual development are scarce, probably because no suitable mutants have been available. However, several asexual mutants, as well as antibody and nucleotide probes, have recently been obtained, so mechanisms of sexual cell fusion may be understood in the near future. Considering the unique phylogenical position of cellular slime molds, analysis of sexual development in these organisms should contribute to the understanding of the mechanism and evolution of sexual reproduction systems.  相似文献   

17.
It was previously shown [K. Okamoto, J. Gen. Microbiol. 127, 301 (1981)] that Dictyostelium discoideum cells dissociated from early aggregates, but not aggregation competent cells obtained in a suspension culture, undergo prespore differentiation, when transferred into a medium containing glucose, albumin, and cAMP. Therefore, the former, but not the latter, is considered to have been acquired "differentiation competence." In the present work, the requirements for cells to acquire the differentiation competence are investigated with D. discoideum NC4 strain. On solid substratum, the incubation above a threshold density is absolutely required for this process, while cell aggregation itself is not essential. In suspension cultures, the competence is acquired only under hypertonic conditions. Inhibition of protein synthesis or depletion of cAMP does not affect the acquisition process of the competence. The requirement of hypertonic treatment was also investigated with several other D. discoideum strains.  相似文献   

18.
To determine which glycoproteins may be critical to sexual development in Dictyostelium discoideum, cell samples from different developmental stages were separated by sodium dodecyl sulfate - polyacrylamide gel electrophoresis and blotted to nitrocellulose. Concanavalin A (ConA) and wheat germ agglutinin (WGA) binding proteins were visualized on the blots using an immunochemical procedure employing peroxidase-antiperoxidase. ConA labelled at least 28 proteins, but only one band showed calcium-dependent changes in its expression. WGA bound at least 30 proteins and changes in several bands were observed that did not occur in calcium-deficient controls. Two WGA-binding glycoproteins which migrated at 200 and 166 kilodaltons (kDa), respectively, showed developmental changes associated with the time of cell fusion. One WGA-binding and one ConA-binding glycoprotein migrating at 130 and 126 kDa, respectively, appeared later during sexual development, in association with the phase of zygote differentiation. Several WGA- and ConA-binding glycoproteins decreased during sexual development, but were not affected by the absence of calcium ions. Tunicamycin (1 microgram/mL) inhibited cell fusion when added to sexual cultures prior to the appearance of the 166-kDa glycoprotein gp166. The effects of this inhibitor on development support the importance of glycoproteins to cell fusion during sexual development in D. discoideum.  相似文献   

19.
The culture medium of the strain CK-8 of the cellular slime mold Polysphondylium pallidum contains a cell-fusion induction factor. Cells of the two opposite mating type strains NC-4 and HM1 of Dictyostelium discoideum were treated to induce cell fusion with the diluted fraction of CK-8 cultures, F2, which contains the factor and consequently numerous multinuclear cells were produced. NC-4 and HM1 usually fuse in the sexual cycle and form large multinuclear cells, called giant cells, which develop into macrocysts. These cells are very similar in morphology to the multinuclear cells produced following F2 treatment, however, the latter cells did not develop into macrocysts. In the sexually formed multinuclear cells, only two haploid nuclei fused to form a diploid nucleus and all others degenerate as previously reported. However, in the artificially produced multinuclear cells, no nuclear-fusion and degeneration took place. They stayed as heterokaryons and seem to lyse within 20 h incubation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号