首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Lactic acid fermentation process with L. casei CRL 686 was performed. The static adsorption isotherm over a strong anionic exchange resin, AmberliteTM IRA-400 was measured, and the static binding capacity parameters were quantified. Early recovery of lactic acid from this lactate producer from unclarified culture broth was performed in a liquid solid fluidized bed, with the resin as the solid adsorbent, and the dynamic adsorption capacity was calculated. Good agreement was found between static and dynamic binding capacity values. The fluidized bed height was twice the settled bed height and the overall process was controlled by the liquid solid mass transfer. This operation was also simulated by continuously well stirred tanks arranged in series and superficial solid deactivation as in a gas solid catalytic reactor. The deactivation process takes into account liquid channeling and agglomerations of solid induced by the viscosity of the broth and also by the cells during the adsorption. These patterns were also verified by experimental observations, and are in agreement with the results found in the literature. The breakthrough data together with others from previous works were satisfactorily fitted until the 90% dimensionless concentration was reached for both culture broths. The model could be used in future studies on predictions about the liquid solid fluidized bed behavior and other different operating conditions.  相似文献   

2.
The productivity of a cell mass of Saccharomyces cerevisiae and enzymes of Eupenicillium javanicum increased by cultivation in anair-solid fluidized bed fermentor with agitators. The usefulness of the apparatus for the fluidized bed culture was verified. The productivity of amyiase and protease of the fungus by fluidized bed culture was twice as high as that by stationary culture, considering the dry weight of cells and the enzyme activity. Physiological properties of yeast cells were changed buy the fluidized bed culture; there was a decrease in the cell size of yeast and the changes to the aerobic properties of the yeast cells resulting from excessive supply of oxygen with a high flowrate of air.  相似文献   

3.
Summary In order to minimize the adverse effect of CO2 gas in a packed bed immobilized yeast reactor, a fluidized bed reactor was used for the continuous production of ethanol from glucose. Immobilized yeast was prepared by entrapping whole cells of Saccharomyces cerevisiae within a Caalginate matrix. It was found that the efficiency of the ethanol production in a fluidized bed reactor was 100% better than that for a packed bed reactor system. The alcohol productivity obtained was 21 g/l/hr in a fluidized bed reactor at 94% of conversion level.  相似文献   

4.
In the present in vitro model, the authors intended to assess viability and functionality of hepatocytes encapsulated into alginate beads and submitted to a fluidized bed motion in a bioreactor. Human immortalized C3A line was chosen as cell model. Two controls consisting of (1) cells cultured on flasks and (2) cells encapsulated in alginate beads under static conditions were implemented. The cell functions studied were total protein, albumin, urea, and ammonia synthesis, as well as ammonia removal in the case of overdose. The comparison among the three cases studied showed that the three-dimensional structure of alginate offered a suitable environment for cell functions. In addition, the fluidized bed bioreactor enhanced the mass transfer and thus increased the amount of species released out of the beads, as compared with the static case. Ammonia detoxification only appeared reduced by encapsulation. The concept of a fluidized bed bioartificial liver was thus validated by this in vitro model, which indicated that cell functions could be efficiently retained. In addition, as far as urea and protein synthesis and release were concerned, the use of the C3A cell line, in combination with encapsulation and fluidization technology, offered a real potentiality for the purpose of extracorporeal liver supply.  相似文献   

5.
Scalability is a major demand for high-yield, stable bioprocess systems in animal cell culture-based biopharmaceutical production. Increased yields can be achieved through high-density cell culture, such as in the combination of microcarrier and fluidized bed bioreactor technology. To minimize inocula volume in industrial applications of fluidized bed fermentation systems, it is crucial to increase the bed volume in the reactor during the fermentation process. We tested scale-up strategy for the production of recombinant human arylsulfatase B (ASB) enzyme used in enzyme replacement therapy in patients afflicted with mucopolysaccharidosis type VI (MPS VI). This enzyme was derived from Chinese hamster ovary (CHO) cells cultivated as adherent cell culture on Cytoline macroporous microcarriers (Amersham Biosciences, Uppsala, Sweden) using a Cytopilot Mini fluidized bed bioreactor (FBR; Amersham Biosciences, Vogelbusch, Austria). Both 1:2 expansion (herein referred to as the addition of fresh, not-yet-colonized microcarriers) and 1:6 expansion of the carrier bed were performed successfully; the cells restarted to proliferate for colonizing these newly added carriers; and the stability of the culture was not negatively affected.  相似文献   

6.
Expanded bed adsorption is an innovative chromatographic technology that allows the introduction of particle-containing feedstock without the risk of blocking the bed. Provided a perfectly classified fluidized bed (termed expanded bed) is formed in the crude feedstock and the biomass is not influencing protein transport towards the adsorbent surface, a sorption performance comparable to packed beds is found. The influence of biomass on the hydrodynamic stability of expanded beds is essential and was investigated systematically in this article. Residence-time distribution analyses were performed using model systems and a yeast suspension under various fluid-phase conditions. It is demonstrated that three factors (biomass/adsorbent interactions, biomass concentration, and flow rate) play an interdependent role disturbing the classified fluidization of an expanded bed. A clear correlation between the degree of aggregative fluidization--obtained by PDE modeling of RTD data--and the expansion behavior of the fluidized bed has been found. Thus, combining three analytical methods, namely cell transmission index analysis, expansion analysis, and RTD analysis provides a solid base for understanding and control of the fluidization behavior and thus further process design during the initial phase of process development.  相似文献   

7.
Summary In order to study cell behavior in solid fermentation processes, model systems using gelatin and starch have been developed to track Baker's yeast growth. The difficulty in estimating the cell concentration within solid materials arises because both the solid material and the cellular material contribute to the measurement (such as optical resistance). In general, however, the two materials cannot be easily separated, hence the need to measure the cells along with the solid supporting material. A simple spectrophotometric method has previously been shown to work well in both aerated submerged batch cultures and aerated static solid cultures. The optical approach is applied here to monitor a more complex solidified system: cell growth in a novel air-fluidized/expanded bed of yeast growing on a starch matrix. Conventional assays for reducing sugar, total extracellular protein, and extracellular lysine were also applied to monitor yeast behavior in this new system.  相似文献   

8.
The adsorption, in a liquid fluidized bed, of Bovine Serum Albumin (BSA), onto an ion-exchange absorbent, Q-Sepharose Fast Flow, in the presence of Alcaligenes eutrophus cells, has been studied. The expansion of the fluidized bed is greater in the presence than in the absence of cells and obeys the laws of Richardson and Zaki. The effect of cell concentration on the equilibrium adsorption characteristics of the adsorbent has been assessed. The rate of adsorption of BSA onto the adsorbent has been studied in a batch stirred tank, and a fluidized bed system both in the presence and absence of cells. Comparisons have been made with the adsorption of human immunoglobulin G (human IgG), onto an affinity adsorbent, Protein A Sepharose CL-4B. The data from the fluidized bed breakthrough tests have been used to assess the validity of a theoretical model adapted from one that predicts the performance of the adsorption phase in the absence of cells in fixed bed systems. Tests have been done on the washing phase in the fluidized bed adsorption system to establish the most efficient method of washing cells and unadsorbed protein out of the bed.  相似文献   

9.
A three-phase fluidized bed equipped with a turbine agitator was utilized as a simple device for disrupting bakers' yeast cells (Saccharomyces cerevisiae). The degree of yeast cell disruption was evaluated based on the number of broken cells and its validity was confirmed by the total amount of crude soluble proteins released and by microscopic observation. It was found that the equipment could yield 90% of yeast cell disruption. With the presence of glass beads, the degree of cell disruption became higher as agitating speed is increased. The disruption enhancement would be attributed to the grinding effect resulting from the interaction between yeast cells and glass beads. One-thousand micrometers of glass beads yielded a higher degree of disruption than larger ones. An increase in liquid flow rate hindered the degree of disruption because of shorter contact time although the shear rates in the yeast suspension would become more rigorous.  相似文献   

10.
The enantioselective bioreduction of acetophenone and its various analogues has been carried out using a new yeast strain, Candida tropicalis MTCC 5158, to obtain the corresponding (S)-aryl ethanols with good yield and almost absolute enantioselectivity. The catalytic ability of this microbial strain for acetophenone reduction has been examined and also various parameters of the bioreduction reaction have been optimized. Studies on the catalytic performance showed that this microorganism is capable of carrying out the reduction in a broad range of pH (3-10) and temperature (25-40 degrees C), making it a more versatile biocatalyst. The preparative scale bioreduction of acetophenone using resting cells of Candida tropicalis yielded S-(-)-1-phenyl ethanol with 43% yield and >99% enantiomeric excess.  相似文献   

11.
Hydrodynamics and performance in fluidized bed adsorption   总被引:4,自引:0,他引:4  
The performance of fluidized bed adsorption is strongly influenced by the hydrodynamics of the fluidization process. Especially axial mixing in the liquid and solid phase may lead to reduced capacity and resolution. In this article axial mixing in the liquid phase of a classified fluidized bed based on porous glass granules is presented. Axial mixing was analyzed by measurements of residence time distributions in a fluidized bed, showing a reduction of mixing at increased ratio of bed height to diameter as well as at increased linear velocity of the liquid stream. These results were transferred to two real adsorption systems on two different scales: In a bench scale (up to 15 mL of adsorbent) the purification of monoclonal antibodies from hybridoma supernatant was performed with a cation exchanger, in a larger scale (up to 750 mL of matrix) the adsorption of bovine serum albumin (BSA) on the same matrix was investigated. The results showed an increase of capacity at increased bed height-to-diameter ratio; with regard to linear velocity a broad range of only slightly changed capacity was found. A shift from dispersion controlled to diffusion controlled adsorption at intermediate linear velocity was proposed by isolating the effect of pore diffusion from the effect of dispersion. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
AIMS: To separate Saccharomyces cerevisiae cells from aqueous solutions using magnetically stabilized fluidized beds (MSFB) that utilize a horizontal magnetic field, and to study the effect of some parameters, such as bed porosity and height, liquid flow rate and inlet concentration on cell removal efficiency and breakthrough curves. METHODS AND RESULTS: The separation process was conducted in an MSFB under the effect of horizontal magnetic field. The magnetic particles used consist of a ferromagnetic core of magnetite (Fe3O4) covered by a stable layer of activated carbon to adsorb the yeast cells from the suspension. The yeast cell concentration in the effluent was determined periodically by measuring the absorbance at 610 nm. The effect of the magnetic field intensity on the bed porosity and consequently the exit-normalized cell concentration from the bed was studied. It was found that bed porosity increased by 75%, and the normalized cell concentration in the bed effluent decreased by 30%, when the magnetic field intensity was increased from 0 to 110 mT. In addition, increasing the magnetic field intensity and bed height delayed the breakthrough point, and allowed efficient cell removal. These results demonstrate an improved method to separate cells of low concentration from cell suspension. CONCLUSIONS: This study allows the continuous separation of yeast cells from aqueous solutions in an MSFB. The removal efficiency is affected by different parameters including the bed height, flow rate and initial concentration. The removal efficiency reaches 82%, and could be improved by varying the operational parameters. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in this investigation show that the MSFB using horizontal fields represents a potential tool for the continuous separation of cell suspension from aqueous solution. This study will contribute to a better understanding of the hydrodynamic parameters on the separation efficiencies of the cell.  相似文献   

13.
Summary Carbon dioxide can be used as the fluid continuous phase for the fermentation of 10 to 40 % aqueous solutions of glucose into ethanol with Saccharomyces cerevisiae using a closed circuit consisting of a fluidized bed of small solid yeast particles, a cooled condenser for the sampling of water and ethanol and a blower. At 18°C, a fermentation of 12 moles glucose per min per g dry weight of yeast was achieved.  相似文献   

14.
Stability of expanded beds during the application of crude feedstock   总被引:3,自引:0,他引:3  
Expanded bed adsorption is an integrated technology that allows the introduction of a particle containing feedstock without the risk of blocking the bed. Provided a perfectly classified fluidized bed (termed expanded bed) is formed in the crude feed, a sorption performance comparable to packed beds is found. During the application of biomass containing samples to stable expanded beds an increase in bed expansion due to the higher density and viscosity of the feed is encountered. In this article it is investigated whether the expanded bed condition is also fulfilled during the transition in bed expansion from lower to higher density (i.e., from an equilibration buffer to a biomass containing feedstock). Residence time distribution analyses were performed by using model systems and a yeast suspension during this transition phase. It is shown that in systems in which the biomass does not interact with the fluidized stationary phase, the perfectly classified fluidization is maintained also during this transition phase regardless of the type of feedstock. Additional bed expansion takes place in an "ordered" manner without compromising bed stability. In case of biomass/adsorbent interactions, a deterioration in bed stability is found directly when the crude feed is loaded.  相似文献   

15.
Continuous culture may be an efficient way of producing proteins which are susceptible to secondary processing in the course of a fermentation process. Short residence times in these systems support the production of correctly assembled proteins by avoiding substrate limitations and product inhibitions and also minimize the contact of sensitive bioproducts with degrading enzymes. Thus products of increased stability and integrity are obtained from continuous processes. The downstream process following continuous culture has to be adapted to the specific conditions of continuous fermentations, e.g. large liquid volumes and diluted process solutions. In this paper an approach is shown how a fluidized bed adsorption as first recovery operation may be coupled directly to a continuous production. Immobilized hybridoma cells are cultivated in porous glass microcarriers in a continuous fluidized bed process, the cell containing harvest is purified by fluidized bed adsorption using an agarose based cation exchange matrix. By this coupled mode of operation the large biomass containing harvest volume resulting from the continuous cultivation may be applied directly to a fluidized chromatographic matrix without prior clarification, leading to a particle free and initially purified product solution of reduced volume. In an experimental setup a bench-scale fluidized bed bioreactor of 25 ml carrier volume was coupled to a fluidized bed adsorption column operated with 300 ml of adsorbent. This configuration yielded up to 20 mg of monoclonal antibody per day in a cell free solution at fourfold concentration and fivefold purification. The process was run for more than three weeks with consistent product output.The help of H. Schmitz, A. Bader, J. Gätgens and M. Halfar during the experiments is gratefully acknowledged. This work was partially funded by the ministry of science and research of the Federal Republic of Germany within the project Stoffumwandlung mit Biokatalysatoren.  相似文献   

16.
Industrial bakers' yeast strain Saccharomyces cerevisiae LH1 was selected for asymmetric reduction of ethyl benzoylacetate to (S)-ethyl 3-hydroxy-3-phenylpropionate. Higher reductive efficiency and higher cofactor availability were obtained with the alternation of cultivation condition (mainly growth medium). Compared to the bioreduction by yeast cells grown in malt extract (ME) medium, the concentration of substrate was increased 25-fold (up to 15.6 g/l) in the yeast peptone dextrose (YPD)-grown cells mediated bioreduction with 97.5% of enantioselective excess of (S)-product. The proteomic responses of S. cerevisiae LH1 cells to growth in aerobic batch cultures fed with either YPD or ME medium were examined and compared. Among the relative quantities of 550 protein spots in each gel, changes were shown in the expression level of 102 intracellular proteins when comparing YPD gel to ME gel. Most of the identified proteins were involved in energy metabolism and several cellular molecular biosynthetic pathway and catabolism. For YPD-grown yeast cells, not only enzymes involved in nicotinamide adenine dinucleotide phosphate regeneration, especially 6-phosphogluconate dehydrogenase, but also alcohol dehydrogenase 1 and D: -arabinose 1-dehydrogenase which had been demonstrated activity toward ethyl benzoylacetate to (S)-hydroxy ester were significantly upregulated. These changes provided us insight in the way the yeast cells adapted to a change in cultivation medium and regulated its catalytic efficiency in the bioreduction.  相似文献   

17.
A novel prototype adsorbent, designed for intensified fluidised bed adsorption processes, was assembled by the emulsification coating of 4% (w/v) porous agarose upon a zirconia-silica solid core. The adsorbent, designated ZSA (particle density 1.75 g/ml, maximum pellicle depth 40 microm), was subjected to physical and biochemical comparison with the performance of two commercial adsorbents (Streamline and Macrosorb K4AX). Bed expansion qualities and hydrodynamic characteristics (N, D(axl) and B(o)) of ZSA demonstrated a marked robustness in the face of elevated velocities (up to 550 cm/h) and biomass loading (up to 30% (ww/v)) disrupted yeast cells. Cibracron Blue derivatives of the pellicular prototype (ZSA-CB), evaluated in the batch and fluidised bed recovery of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) from unclarified yeast disruptates, exhibited superior capacities and adsorption/desorption performance to the commercial derivatives. These advanced physical and biochemical properties facilitated a demonstration of the direct, mechanical coupling of bead-milling and fluidised bed adsorption in a fully integrated process for the accelerated recovery of G3PDH from yeast. The generic application of such pellicular adsorbents and integrated processes to the recovery of labile, intracellular products is discussed.  相似文献   

18.
Increased protein productivity from immobilized recombinant yeast   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae strain Mc16/p520 has an unstable plasmid, p520, which directs production of a wheat alpha-amylase. The effects of immobilizing this microorganism on the plasmid stability and the specific productivity of the secreted alpha-amylase were investigated. Small gelatin beads were used as the support in both fluidized and packed bed configurations, and the yeast cells were attached by covalent cross-linking with glutaraldehyde. These data were then compared to those for nonimmobilized, suspension cells.Plasmid stability was increased for the immobilized cells during continuous culture at dilution rates both above and below washout. Continuous suspension cultures were not stable and rapidly lost the plasmid. Immobilization caused an increase in specific and volumetric productivity during continuous culture, with a packed bed design resulting in the highest specific productivity.  相似文献   

19.
Degradation kinetics of phenol by free and agar-entrapped cells of Candida tropicalis was studied in batch cultures. The initial phenol degradation rate achieved with free cells was higher than that obtained with immobilized cells, when phenol concentrations up to 1000 mg l–1 were used. However, at higher phenol concentrations, the behaviour was quite different. The initial degradation rate of the immobilized yeast cells was about 10 times higher than that of the free cells, at a phenol concentration of 3500 mg l–1. The semicontinuous and continuous degradation of phenol by immobilized yeast cells was also investigated in a multi-stage fluidized bed reactor. The highest phenol removal efficiencies and degradation rates as well as the lowest values of residual phenol and chemical oxygen demand were obtained in the semicontinuous culture when phenol concentrations up to 1560 mg l–1 were used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号