首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
构建了核糖体展示人源抗狂犬病毒单链抗体(scFv)库,筛选制备特异抗狂犬病毒糖蛋白(RVGp)的稳定性人源抗体.应用核糖体抗体库技术,从经狂犬病毒Vero疫苗免疫的志愿者外周血淋巴细胞中分离、构建核糖体展示scFv基因库.体外转录翻译后,以RVGp重组蛋白作筛选抗原,采用亲和富集法淘选RVGp特异性scFv抗体基因.在原核系统pET22b(+)/BL21(DE3)中实现scFv抗体片段的可溶性表达,ELISA鉴定阳性克隆.然后对筛选的scFv进行稳定性改构,构建VH-Lc-VK稳定性抗体,并对其生物学活性进行初步研究.成功构建了库容量约为6.2×1012的核糖体展示scFv抗体基因库.在180个筛选克隆中,克隆RB24、RB71、RB109和RB156显示出较高的ELISA值,其基因序列分析结果显示,它们是全新的人源抗RVGp抗体.改构后的抗RVGp VH-Lc-VK抗体的稳定性明显改进,可特异识别RVGp并有效中和狂犬病毒,抑制狂犬病毒对靶细胞的感染.以上结果表明,人源抗RVGp特异性抗体的获得,为狂犬病的有效预防、诊断和治疗提供了新的途径,而且将为其他人源抗体的制备提供理论依据和技术基础.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):552-562
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.  相似文献   

5.
High affinity ScFvs from a single rabbit immunized with multiple haptens   总被引:2,自引:0,他引:2  
We report the generation of single-chain Fv (scFv) fragments with high affinities against four different hapten molecules from a single immunised rabbit. The rabbit was immunised with a mixture of protein conjugates of four different haptens, namely the herbicide mecoprop and derivatives of the herbicides atrazine, simazine, and isoproturon. An scFv phage display library was constructed, and several scFvs with high affinity against each hapten were isolated. For each hapten, a single binder was selected by k(off) ranking and used for affinity determination. The affinities were in sub-nanomolar range and the lowest K(d) value obtained was 6.75 x 10(-10) M. An unusual feature of one of the anti-isoproturon scFvs was its ability to retain binding activity at pH1.7. The utility and potential of using a single animal and immunisation with multiple antigens for the production of multiple, specific, high affinity scFvs by phage display is discussed.  相似文献   

6.
用柑桔溃疡病致病菌Xanthomonas axonopodis pv. citri(Xac)全菌免疫小鼠,提取小鼠脾细胞mRNA,RT-PCR扩增小鼠抗体重链可变区(VH)和轻链可变区(VL),采用linker (Gly4Ser)3连接VH和VL,构建用于核糖体展示方法筛选阳性单链抗体(scFvs)的文库。通过将scFv文库DNA转化大肠杆菌JM109,随机挑取克隆子测序以分析单链抗体文库的多样性。结果显示,用柑桔溃疡病菌免疫后的小鼠抗血清效价为2500倍左右,扩增的VH大小为350bp左右,VL的大小为650bp左右,linker连接后的单链抗体文库DNA大小为1200bp左右。测序结果显示,单链抗体文库多样性好。以Xac为靶,筛选到了抗Xac的特异性抗体,说明该抗体库可用于柑桔溃疡病菌单链抗体的筛选。  相似文献   

7.

Background

Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes.

Methodology/Principal Findings

In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM2) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA–ribosome–antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM2-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM2 by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis.

Conclusions/Significance

The selection of anti-SM2 specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.  相似文献   

8.
In the present study, we used a phage display technique to screen differentially expressed proteins from zebrafish post-gastrula embryos. With a subtractive screening approach, 6 types of single-chain Fv fragments (scFvs) were screened out from an scFv antibody phage display library by biopanning against zebrafish embryonic homogenate. Four scFv fragments (scFv1, scFv3, scFv4 and scFv6) showed significantly stronger binding to the tailbud embryos than to the 30%-epiboly embryos. A T7 phage display cDNA library was constructed from zebrafish tailbud embryos and used to identify the antigens potentially recognized by scFv1, which showed the highest frequency and strongest binding against the tailbud embryos. We acquired 4 candidate epitopes using scFv1 and the corresponding genes showed significantly higher expression levels at tailbud stage than at 30%-epiboly. The most potent epitope of scFv1 was the clone scFv1-2, which showed strong homology to zebrafish myristoylated alanine-rich C-kinase substrate b (Marcksb). Western blot analysis confirmed the high expression of marcksb in the post-gastrula embryos, and the endogenous expression of Marcksb was interfered by injection of scFv1. Zebrafish marcksb showed dynamic expression patterns during embryonic development. Knockdown of marcksb strongly affected gastrulation movements. Moreover, we revealed that zebrafish marcksb is required for cell membrane protrusion and F-actin alignment. Thus, our study uncovered 4 types of scFvs binding to zebrafish post-gastrula embryos, and the epitope of scFv1 was found to be required for normal gastrulation of zebrafish. To our knowledge, this was the first attempt to combine phage display technique with the embryonic and developmental study of vertebrates, and we were able to identify zebrafish marcksb that was required for gastrulation.  相似文献   

9.
The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.  相似文献   

10.
Duffy binding protein (DBP) plays a critical role in Plasmodium vivax invasion of human red blood cells. We previously reported a single-chain antibody fragment (scFv) that was specific to P. vivax DBP (PvDBP). However, the stabilization and the half-life of scFvs have not been studied. Here, we investigated the effect of PEGylated scFvs on their biological activity and stability in vitro. SDS-PAGE analysis showed that three clones (SFDBII-12, -58, and -92) were formed as dimers (about 70 kDa) with PEGylation. Clone SFDBII-58 gave the highest yield of PEGylated scFv. Binding analysis using BIAcore between DBP and scFv showed that both SFDBII-12 and -58 were decreased approximately by two folds at the level of binding affinity to DBP after PEGylation. However, the SFDBII-92 clone still showed a relatively high level of binding affinity (KD=1.02 x 10(-7) M). Binding inhibition assay showed that PEGylated scFv was still able to competitively bind the PvDBP and play a critical role in inhibiting the interactions between PvDBP protein expressed on the surface of Cos-7 cells and Duffy receptor on the surface of erythrocytes. When both scFvs and their PEGylated counterparts were exposed to trypsin, scFv was completely degraded only after 24 h, whereas 35% of PEGylated scFvs remained intact, maintaining their stability against the proteolytic attack of trypsin until 72 h. Taken together, these results suggest that the PEGylated scFvs retain their stability against proteolytic enzymes in vivo, with no significant loss in their binding affinity to target antigen, DBP.  相似文献   

11.
Synthetic DNA libraries encoding human antibody VL and VH fragments were designed, constructed, and enriched using mRNA display. The enriched libraries were then combined to construct a scFv library for mRNA display. Sequencing revealed that 46% of the library coded for full-length scFvs. Considering the number of molecules used in mRNA display, the size of the library displayed was calculated to be >1010. To verify this, we tried to isolate a scFv against human RANK. A scFv was successfully isolated in the sixth round of panning and was synthesized in wheat embryo cell-free (WE) and Escherichia coli cell systems. In the WE system, even though the production level was high, the product was almost soluble. However, in the E. coli system, it was over-produced as inclusion bodies. The inclusion bodies were successfully refolded and showed approximately the same binding affinity as the WE product. These results demonstrate that using mRNA display with synthetic libraries and WE and E. coli cell production systems, a system for in vitro selection and small- to large-scale production of scFvs has been established.  相似文献   

12.
目的:构建库容量大、多样性好的核糖体展示口蹄疫单链抗体(scFv)库。方法: 分离口蹄疫病毒免疫的兔脾细胞,提取总RNA,用RT-PCR扩增兔抗体的重链可变区(VH)基因和轻链可变区(VL)基因,同时扩增作为间隔区的兔抗体Ck基因;采用重叠延伸PCR (简称SOE-PCR)技术连接VH-VL基因,同时引入T7启动子和核糖体结合位点序列,体外构建核糖体展示scFv库模板,连接pMD18-T载体转化E.coli DH5α大肠杆菌,挑取阳性克隆测序以鉴定scFv组装。结果:成功构建了库容量达8.21×1013的兔源口蹄疫核糖体展示scFv库。结论: 构建的大容量兔源性口蹄疫核糖体展示抗体库可以成为进一步筛选特异性口蹄疫单链抗体的实验平台,为开发诊断性口蹄疫单链抗体奠定了很好的实验基础。  相似文献   

13.
目的:利用核糖体展示技术筛选口蹄疫病毒特异性单链抗体基因。方法:在已构建好的核糖体展示文库的基础上,利用核糖体展示技术,经过5轮的体外转录、体外转译、亲和筛选和RT-PCR,将得到的序列进行测序分析。结果:筛选到FMDV scFv基因,且基因得到富集。结论:实验运用核糖体展示技术,以FMDV抗原和纯化的146S病毒粒子为靶标筛选到了FMDV scFv基因,将为scFv用于FMD的基础研究、免疫学研究以及为预防、治疗和诊断提供帮助,也为研制FMD的快速诊断技术奠定先前基础。  相似文献   

14.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

15.
A potential method for identifying new tumor-specific antibody structures as well as tumor-associated antigens is by selecting scFv phage libraries on tumor cells. This phage display technique involves multiple rounds of phage binding to target cells, washing to remove non-specific phage and elution to retrieve specific binding phage. Although the binding properties of an isolated tumor-specific scFv can be evaluated by ELISA, FACS and immunohistochemistry, it still remains a challenge to define the corresponding antigen. Here, we provide evidence that the target antigen of a given scFv displayed on phages can be detected in an immobilized lambda phage cDNA expression library containing thousands of irrelevant clones. The library contained CD30-negative breast-cancer specific cDNA as well as human CD30 receptor cDNA. The interaction of anti-CD30 scFv phages and their target antigen after blotting onto nitrocellulose filters was documented under defined conditions. Screening of different ratios between CD30 receptor and breast cancer specific clones (1:1 and 1:200) revealed that the CD30 antigen could be detected by anti-CD30 scFv phages using at least 5x10(12) plaque forming units of filamentous phages per blot. These investigations demonstrate that it is possible to detect the target antigen of a preselected scFv displayed on filamentous phages in lambda phage cDNA expression libraries.  相似文献   

16.
Phage-display technology is probably the best available strategy to produce antibodies directed against various carbohydrate moieties since conventional hybridoma technologies have yielded mostly low-affinity antibodies against a limited number of carbohydrate antigens. Because of difficulties in immobilization of carbohydrate antigens onto plastic plates, however, the same procedures used for protein antigens cannot be readily applied. We adapted phage-display technology to generate human single chain antibodies (scFvs) using neoglycolipids as antigens. This study describes the isolation and characterization of phage-displayed antibodies (phage Abs) that recognized nonreducing terminal mannose residues. We first constructed a phage Ab library with a large repertoire using CDR shuffling and VL/VH shuffling methods with unique vector constructs. The library was subjected to four rounds of panning against neoglycolipids synthesized from mannotriose (Man3) and dipalmitoylphosphatidylethanolamine (DPPE) by reductive amination. Of 672 clones screened by enzyme-linked immunosorbent assay (ELISA) using Man3-DPPE as an antigen, 25 positive clones encoding scFvs with unique amino acid sequences were isolated as candidates for phage Abs against Man3 residues. TLC-overlay assays and surface plasmon resonance analyses revealed that selected phage Abs bound to neoglycolipids bearing mannose residues at nonreducing termini. In addition, binding of the phage Ab to RNase B carrying high mannose type oligosaccharides but not to fetuin carrying complex type and O-linked oligosaccharides was confirmed. Furthermore, first round characterization of scFvs expressed from respective phages indicated good affinity and specificity for nonreducing terminal mannose residues. These results demonstrated the usefulness of this strategy in constructing human scFv against various carbohydrate antigens. Further studies on the purification and characterization of these scFvs are presented in an accompanying paper in this issue.  相似文献   

17.
The Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems. Here, we report on the successful selection of TF-specific antibody fragments using a multivalent scFv phagemid library format based on shortened linkers (one amino acid residue). The libraries were constructed from mice immunized with asialoglycophorin and selected using TF displayed on two different carrier molecules in combination with the proteolytically cleavable helper phage KM13. All isolated clones encoded the same framework genes and the same complementarity-determining regions. After affinity maturation only scFv with the founder sequence were selected from secondary repertoires. This indicates a very narrow sequence window for TF-specific antibodies. Investigating other linker-length formats revealed a clear inverse correlation between linker length and binding activity both as soluble proteins and displayed on phages. The highest affinity was obtained with the tetrameric format. The selected scFv was specific for TF on various carrier molecules and tumor cells and performed well in ELISA and immunohistochemistry. We postulate that scFv phagemid library formats with short linkers (i.e. multimeric scFvs) may, in general, be advantageous in selections for the generation of scFvs against carbohydrate epitopes or other epitopes associated with low intrinsic affinity per binding site), and expect that they will be superior in applications for diagnosis or therapy.  相似文献   

18.
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV''s NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   

19.
《MABS-AUSTIN》2013,5(5):1327-1339
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   

20.
This protocol describes the process of isolating and engineering antibodies or proteins for increased affinity and stability using yeast surface display. Single-chain antibody fragments (scFvs) are first isolated from an existing nonimmune human library displayed on the yeast surface using magnetic-activated cell sorting selection followed by selection using flow cytometry. This enriched population is then mutagenized, and successive rounds of random mutagenesis and flow cytometry selection are done to attain desired scFv properties through directed evolution. Labeling strategies for weakly binding scFvs are also described, as well as procedures for characterizing and 'titrating' scFv clones displayed on yeast. The ultimate result of following this protocol is a panel of scFvs with increased stability and affinity for an antigen of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号