首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent data were summarized concerning the presence in the retina of fish, amphibians and birds of additional sources of growth and regeneration, alternative to the already known sources, such as growth zone of eye, pigment epithelium, and cells–precursors of rods, and which are localized in the inner nuclear layer of retina. These sources are represented by as yet not finally identified oval small cells and cells of Müller glia. Both types of cells are capable of proliferating and producing precursors for various differentiated cells, including photoreceptors or their additional precursors. The current immunochemistry data are provided, which were obtained using markers of proliferation, proneural phenotype, and specific cell differentiation in the growing retina and in the retina after various damages. The regulatory mechanisms and methods of the stimulation of proliferation of the cells, which are sources of increase in the number and restoration of photoreceptors, interneurons, and glial cells of vertebrate retina, are discussed.  相似文献   

2.
The developing vertebrate retina produces appropriate ratios of seven phenotypically and functionally distinct cell types. Retinal progenitors remain multipotent up until the last cell division, favoring the idea that extrinsic cues direct cell fate. We demonstrated previously that fibroblast growth factor (FGF) receptors are necessary for transduction of signals in the developing Xenopus retina that bias cell fate decisions (S. McFarlane et al., 1998, Development 125, 3967-3975). However, the precise identity of the signal remains unknown. To test whether an FGF signal is sufficient to influence cell fate choices in the developing retina, FGF-2 was overexpressed in Xenopus retinal precursors by injecting, at the embryonic 16-cell stage, a cDNA plasmid encoding FGF-2 into cells fated to form the retina. We found that FGF-2 overexpression in retinal precursors altered the relative numbers of transgene-expressing retinal ganglion cells (RGC) and Müller glia; RGCs were increased by 35% and Müller glia decreased by 50%. In contrast, the proportion of retinal precursors that became photoreceptors was unchanged. Within the photoreceptor population, however, we found a twofold increase in rod photoreceptors at the expense of cone photoreceptors. These data are consistent with an endogenous FGF signal influencing cell fate decisions in the developing vertebrate retina.  相似文献   

3.
The retinas of teleost fish grow continuously, in part, by neuronal hyperplasia and when lesioned will regenerate. Within the differentiated retina, the growth-associated hyperplasia results in the generation of new rod photoreceptors only, whereas injury-induced neurogenesis results in the regeneration of all retinal cell types. It is believed, however, that both new rod photoreceptors and regenerated neurons originate from the same populations of intrinsic progenitors. Experiments are described here that attempt to identify in the normal retina of goldfish neuronal progenitors intrinsic to the retina, particularly those which have remained cryptic because they divide infrequently. Long-term, systemic exposure to bromodeoxyuridine (BrdU) was used to label these cells. Five populations of proliferative cells were labeled: microglia, which are briefly described but not studied further; retinal progenitors in the circumferential germinal zone (CGZ); and rod precursors in the outer nuclear layer (ONL), both of which have been well characterized previously; and two populations of slowly-dividing cells in the inner nuclear layer (INL). The majority of these cells have a fusiform morphology, whereas the remaining ones are spherical. Longitudinal BrdU labeling suggests that the fusiform cells migrate to the ONL to replenish the pool of rod precursors. A subset of the spherical cells express pax6, although none are stained with markers of differentiated amacrine or bipolar cells. It is hypothesized that these rare, pax6-expressing cells are retinal stem cells, which give rise to the pax6-negative fusiform cells. Based on these data, two models are proposed: the first describes the lineage of rod photoreceptors in goldfish; the second is a consensus model of neurogenesis in the retinas of all teleosts.  相似文献   

4.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

5.
6.
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.  相似文献   

7.
8.
Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK−1/−2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under physiological conditions or transient hypoxia seem to provide an anti-angiogenic environment, but long-lasting hypoxia causes the release of bFGF, which might significantly co-stimulate neovascularization in the retina.  相似文献   

9.
Through mechanisms still unknown, the apparently homogeneous neuroepithelium of the embryonic optic cup differentiates into such divergent cell types as photoreceptors, glia, and various subsets of neurons. Questions that still remain unanswered in this field include the timing and mechanism of action of the "instructive" events directing each neuroepithelial cell to undergo the sequence of phenotypic changes necessary to develop into a specific retinal cell type. This laboratory is investigating some of these questions using cultures in which dissociated neural retina cells, obtained before the onset of overt photoreceptor differentiation, develop at low density in the absence of glia and pigment epithelium. The cultures initially are a morphologically homogeneous population of process-free, round cells. Some cells retain this morphology throughout the first week in vitro, while others develop either as photoreceptors or as multipolar neurons. Photoreceptors elongate and become very asymmetric as they do in vivo, with characteristic compartments orderly arranged along their longitudinal axis (an outer segment-like process, inner segment, cell body, and a characteristically short, single neurite). Cell polarization can also be observed in the distribution of opsin immunoreactive materials and some cytoskeletal elements. Thus, certain precursor cells present in the embryonic retina seem to be programmed to differentiate into photoreceptors even when developing in the absence of contacts with other retinal cells. However, interactions with other constituents of the retina/pigment epithelium complex are probably necessary to ensure final photoreceptor maturation, including further growth of the opsin-rich outer segment process.  相似文献   

10.
11.
The adult zebrafish retina possesses a robust regenerative response. In the light-damaged retina, Müller glial cell divisions precede regeneration of rod and cone photoreceptors. Neuronal progenitors, which arise from the Müller glia, continue to divide and use the Müller glial cell processes to migrate to the outer nuclear layer and replace the lost photoreceptors. We tested the necessity of Müller glial cell division for photoreceptor regeneration. As knockdown tools were unavailable for use in the adult zebrafish retina, we developed a method to conditionally inhibit the expression of specific proteins by in vivo electroporation of morpholinos. We determined that two separate morpholinos targeted against the proliferating cell nuclear antigen (PCNA) mRNA reduced PCNA protein levels. Furthermore, injection and in vivo electroporation of PCNA morpholinos immediately prior to starting intense light exposure inhibited both Müller glial cell proliferation and neuronal progenitor marker Pax6 expression. PCNA knockdown additionally resulted in decreased expression of glutamine synthetase in Müller glia and Müller glial cell death, while amacrine and ganglion cells were unaffected. Finally, histological and immunological methods showed that long-term effects of PCNA knockdown resulted in decreased numbers of Müller glia and the failure to regenerate rod photoreceptors, short single cones, and long single cones. These data suggest that Müller glial cell division is necessary for proper photoreceptor regeneration in the light-damaged zebrafish retina and are consistent with the Müller glia serving as the source of neuronal progenitor cells in regenerating teleost retinas.  相似文献   

12.
Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.  相似文献   

13.
《The Journal of cell biology》1989,109(4):1483-1493
We have used isolated embryonic photoreceptor cells as a model system with which to examine the mechanisms responsible for the development and maintenance of asymmetric Na+,K+-ATPase (ATPase) distribution. Photoreceptor precursors, which appear round and process free at culture onset, develop structural and molecular properties similar to those of photoreceptor cells in vivo. ATPase, recognized by an anti- ATPase antibody, is distributed over the entire surface of round photoreceptor precursors. As the cells develop, ATPase becomes progressively concentrated in the inner segment (where it is found in cells of the intact retina). This phenomenon occurs in cells developing in the absence of intercellular contacts. The development of ATPase polarity correlates with a decrease in the fraction of ATPase molecules that are mobile in the membrane (as determined by fluorescence photobleaching recovery), as well as with an increase in the fraction of ATPase that remains associated with the cells after detergent extraction. The magnitudes of the mobile ATPase fractions agree well with those of the detergent-extractable fractions in both the immature and developed photoreceptors. The distribution of alpha spectrin and ATPase-immunoreactive materials appeared qualitatively similar, and quantitative image analysis showed similar gradients of spectrin and Na+,K+-ATPase immunofluorescence along the long axis of elongated photoreceptors. Moreover, detergent extractability of alpha spectrin and the ATPase showed similar modifications in response to changes in pH or KCl concentration. ATPase detergent-extractable and mobile fractions were not changed in cultures treated with cytoskeletal inhibitors such as nocodazole. These data are consistent with a role for an asymmetrically distributed, spectrin-containing subcortical cytoskeleton in the preferential accumulation of Na+,K+-ATPase in the photoreceptor inner segment.  相似文献   

14.
This study describes regeneration of the neural retina in juvenile goldfish. The retina was destroyed with an intraocular injection of ouabain, a technique introduced by Wolburg and colleagues (Maier and Wolburg, 1979; Kurz-Isler and Wolburg, 1982). We confirmed their observation that the level of damage produced by the toxin was graded, in that neurons in the inner retinal layers were preferentially destroyed, and only in the more severely affected retinas were cells in the outer nuclear layer (i.e., photoreceptor cells) damaged. Evidence of retinal regeneration could be seen beginning about 2 weeks after the injection of ouabain. In contrast to previous studies (Maier and Wolburg, 1979), we found that regeneration took place only in those retinas in which photoreceptors had been destroyed. In cases in which the outer nuclear layer was spared, no regeneration of inner layers occurred, even after 6 months. Thymidine autoradiography was used to document the regeneration of new retinal neurons and to show that rod precursors, like other dividing cells, were not destroyed by the ouabain, but in contrast showed an increased mitotic activity. Regeneration did not proceed uniformly, but was initiated at neurogenic foci scattered across the retina. These foci consisted of clusters of dividing neuroepithelial-like cells. The evidence is consistent with the proposal that these cells were derived from rod precursors. These results imply that rod precursors are capable of a wider range of developmental fates than they normally express.  相似文献   

15.
GDNF family receptor alpha (GFRalpha) receptors are involved in the regulation of different aspects of embryonic development such as proliferation, migration, differentiation and survival. To determine the possible role of GFRalpha4 in retinal development, we analysed its expression in the developing chicken retina. We found that GFRalpha4 is temporally co-expressed with c-ret. Both, the temporal and spatial expression of GFRalpha4 is developmentally regulated during retinogenesis and is first detected in cells of the ganglion cell layer at E6. As development of the retina proceeds, the expression of GFRalpha4 extends to cells of the inner half of the inner nuclear layer and to cells of the outermost cell row of the inner nuclear layer. Later on, GFRalpha4 expression is also found in additional cells of the outer half of the inner nuclear layer and in a subpopulation of photoreceptors. A central-to-peripheral gradient of retinal differentiation is evident, as the onset of GFRalpha4 expression is first detectable in the central retina, while it is delayed by two days in its periphery.  相似文献   

16.
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Müller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.  相似文献   

17.
Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to unsorted cell suspensions.  相似文献   

18.
Stuck MW  Conley SM  Naash MI 《PloS one》2012,7(3):e32484
The neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/-) retina, rods are converted into functional cone-like cells. The Nrl(-/-) retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl(-/-) retina. We report that rosettes first appear at postnatal day (P)8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM) are not uniformly formed in the Nrl(-/-) retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl(-/-) retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM.  相似文献   

19.
The development of photoreceptors in the mammalian retina is thought to be controlled by extrinsic signals. We have shown previously that ciliary neurotrophic factor (CNTF) potently inhibits photoreceptor differentiation in cultures of rat retina. The present study analyzes which developmental processes are affected by CNTF. Rod differentiation as determined by opsin and recoverin immunocytochemistry was effectively blocked by CNTF and leukemia inhibitory factor, but not by other neurotrophic agents tested. CNTF did not influence proliferation, cell death, or survival, and had no effect on the downregulation of nestin immunoreactivity in progenitor cells. Opsin-positive rods could be reverted to an opsin-negative state initially, but became unresponsive to CNTF later. No compensatory increase in the number of other cell types was observed. Application of neutralizing antibodies against CNTF revealed that rod development was partially blocked by an endogenous CNTF-like molecule in control cultures. Our results suggest that CNTF can act as a specific negative regulator of rod differentiation. Its action on photoreceptor precursor cells could serve to synchronize the maturation of photoreceptors, which are born over an extended period of time. Together with other stimulatory signals, CNTF may thus control the temporally and numerically correct integration of photoreceptors into the retinal network.  相似文献   

20.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号