首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is commonly used as an analogue for dioxygen in structural and spectroscopic studies of oxygen binding and oxygen activation. In this study, crystallographic structures of naphthalene dioxygenase (NDO) in complex with nitric oxide are reported. In the presence of the aromatic substrate indole, NO is bound end-on to the active-site mononuclear iron of NDO. The structural observations correlate well with spectroscopic measurements of NO binding to NDO in solution. However, the end-on binding of NO is in contrast to the recently reported structure of oxygen to the active-site iron of NDO that binds side-on. While NO is a good oxygen analogue with many similarities to O2, the different binding mode of NO to the active-site iron atom leads to different mechanistic implications. Hence, caution needs to be used in extrapolating NO as an analogue to O2 binding.  相似文献   

2.
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.  相似文献   

3.
2,4-Dinitrotoluene (DNT) dioxygenase from Burkholderia sp. strain DNT catalyzes the initial oxidation of DNT to form 4-methyl-5-nitrocatechol (MNC) and nitrite. The displacement of the aromatic nitro group by dioxygenases has only recently been described, and nothing is known about the evolutionary origin of the enzyme systems that catalyze these reactions. We have shown previously that the gene encoding DNT dioxygenase is localized on a degradative plasmid within a 6.8-kb NsiI DNA fragment (W.-C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). We describe here the sequence analysis and the substrate range of the enzyme system encoded by this fragment. Five open reading frames were identified, four of which have a high degree of similarity (59 to 78% identity) to the components of naphthalene dioxygenase (NDO) from Pseudomonas strains. The conserved amino acid residues within NDO that are involved in cofactor binding were also identified in the gene encoding DNT dioxygenase. An Escherichia coli clone that expressed DNT dioxygenase converted DNT to MNC and also converted naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, the E. coli clone that expressed NDO did not oxidize DNT. Furthermore, the enzyme systems exhibit similar broad substrate specificities and can oxidize such compounds as indole, indan, indene, phenetole, and acenaphthene. These results suggest that DNT dioxygenase and the NDO enzyme system share a common ancestor.  相似文献   

4.
Numerous X-ray crystal structures of the metallo-beta-lactamase from Bacteroides fragilis and related organisms show a beta-hairpin loop immediately adjacent to the active-site zinc atom(s). Both crystallographic and NMR information show that the end of this beta-hairpin loop, which contains a solvent exposed tryptophan residue, Trp49, is highly flexible in the absence of substrates or other ligands, giving rise in some of the X-ray structures to a lack of observable electron density in this region. We report an investigation of the role of this mobile, solvent-exposed tryptophan using site-directed mutagenesis, steady state kinetics measurements and characterization by NMR. Trp49 appears to have a role both in substrate binding and in promotion of catalysis. Substitution of this residue with a number of different side chains indicates that the binding interaction depends on the bulky hydrophobic and aromatic nature of the indole ring, which can provide relatively non-specific interactions with a variety of antibiotic substrates. In this way, the tryptophan at this position provides a large degree of the breadth of substrate specificity for the metallo-beta-lactamase. Previous studies established that the antibiotic binding site was sufficiently plastic that the derivatization of existing antibiotics is unlikely to result in the successful treatment of bacterial infections incorporating this resistance element. Rather, a more productive approach may be to design therapeutics directed towards this solvent-exposed tryptophan residue.  相似文献   

5.
The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The three-dimensional structure of NDO revealed that several of the amino acids at the active site of the oxygenase are hydrophobic, which is consistent with the enzyme's preference for aromatic hydrocarbon substrates. Although NDO catalyzes cis-dihydroxylation of a wide range of substrates, it is highly regio- and enantioselective. Site-directed mutagenesis was used to determine the contributions of several active-site residues to these aspects of catalysis. Amino acid substitutions at Asn-201, Phe-202, Val-260, Trp-316, Thr-351, Trp-358, and Met-366 had little or no effect on product formation with naphthalene or biphenyl as substrates and had slight but significant effects on product formation from phenanthrene. Amino acid substitutions at Phe-352 resulted in the formation of cis-naphthalene dihydrodiol with altered stereochemistry [92 to 96% (+)-1R,2S], compared to the enantiomerically pure [>99% (+)-1R,2S] product formed by the wild-type enzyme. Substitutions at position 352 changed the site of oxidation of biphenyl and phenanthrene. Substitution of alanine for Asp-362, a ligand to the active-site iron, resulted in a completely inactive enzyme.  相似文献   

6.
The naphthalene dioxygenase (NDO) system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The enzyme has a broad substrate range and catalyzes several types of reactions including cis-dihydroxylation, monooxygenation, and desaturation. Substitution of valine or leucine at Phe-352 near the active site iron in the alpha subunit of NDO altered the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene and also changed the region of oxidation of biphenyl and phenanthrene. In this study, we replaced Phe-352 with glycine, alanine, isoleucine, threonine, tryptophan, and tyrosine and determined the activity with naphthalene, biphenyl, and phenanthrene as substrates. NDO variants F352W and F352Y were marginally active with all substrates tested. F352G and F352A had reduced but significant activity, and F352I, F352T, F352V, and F352L had nearly wild-type activities with respect to naphthalene oxidation. All active enzymes had altered regioselectivity with biphenyl and phenanthrene. In addition, the F352V and F352T variants formed the opposite enantiomer of biphenyl cis-3,4-dihydrodiol [77 and 60% (-)-(3S,4R), respectively] to that formed by wild-type NDO [>98% (+)-(3R,4S)]. The F352V mutant enzyme also formed the opposite enantiomer of phenanthrene cis-1,2-dihydrodiol from phenanthrene to that formed by biphenyl dioxygenase from Sphingomonas yanoikuyae B8/36. A recombinant Escherichia coli strain expressing the F352V variant of NDO and the enantioselective toluene cis-dihydrodiol dehydrogenase from Pseudomonas putida F1 was used to produce enantiomerically pure (-)-biphenyl cis-(3S,4R)-dihydrodiol and (-)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl and phenanthrene, respectively.  相似文献   

7.
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.  相似文献   

8.
Wild-type naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 transforms relatively planar flavone and isoflavone to cis-dihydrodiols. However, this enzyme cannot catalyze the transformation of flavanone and isoflavanone in which a phenyl group bonds to the stereogenic C2 or C3 of the C-ring. Protein modeling suggested that Phe224 in the substrate binding site of NDO may play a key role in substrate specificity toward flavanone and isoflavanone. Site-directed mutants of NDO with substitution of Phe224 with Tyr biotransformed only the (S)-stereoisomers of flavanone and isoflavanone, producing an 8-OH group on the A-ring. In contrast, the Phe224Cys and Phe224Gln substitutions, which used (2S)-flavanone as a substrate, and Phe224Lys, which transformed (2S)-flavanone and (3S)-isoflavanone, each showed lower activity than the Phe224Tyr substitution. The remainder of the tested mutants had no activity with flavanone and isoflavanone. Protein docking studies of flavanone and isoflavanone to the modeled mutant enzyme structures revealed that an expanded substrate binding site, due to mutation at 224, as well as appropriate hydrophobic interaction with the residue at 224, are critical for successful binding of the substrates. Results of this study also suggested that in addition to the previously known Phe352, the Phe224 site of NDO appears to be important site for expanding the substrate range of NDO and bringing regiospecific and stereospecific hydroxylation reactions to C8 of the flavanone and isoflavanone A-rings.  相似文献   

9.
The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 A by molecular replacement revealed the enzyme to share the same global alpha(3)beta(3) structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate binding pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 A. An 11 A long water channel extends from the interface between the alpha and beta subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.  相似文献   

10.
Naphthalene 1,2-dioxygenase (NDOS) is a three-component enzyme that catalyzes cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene formation from naphthalene, O2, and NADH. We have determined the conditions for a single turnover of NDOS for the first time and studied the regulation of catalysis. As isolated, the alpha3beta3 oxygenase component (NDO) has up to three catalytic pairs of metal centers (one mononuclear Fe2+ and one diferric Rieske iron-sulfur cluster). This form of NDO is unreactive with O2. However, upon reduction of the Rieske cluster and exposure to naphthalene and O2, approximately 0.85 cis-diol product per occupied mononuclear iron site rapidly forms. Substrate binding is required for oxygen reactivity. Stopped-flow and chemical quench analyses indicate that the rate constant of the single turnover product-forming reaction significantly exceeds the NDOS turnover number. UV-visible and electron paramagnetic resonance spectroscopies show that during catalysis, one mononuclear iron and one Rieske cluster are oxidized per product formed, satisfying the two-electron reaction stoichiometry. The addition of oxidized or reduced NDOS ferredoxin component (NDF) increases both the product yield and rate of oxidation of formerly unreactive Rieske clusters. The results show that NDO alone catalyzes dioxygenase chemistry, whereas NDF appears to serve only an electron transport role, in this case redistributing electrons to competent active sites.  相似文献   

11.
The heme enzyme lignin peroxidase contains a unique Cbeta-hydroxylated tryptophan residue (Trp171) on the surface of the enzyme. Mutagenetic substitution of Trp171 abolishes completely the veratryl alcohol oxidation activity of the enzyme. This led us to surmise that Trp171 may be involved in electron transfer from natural substrates to the heme cofactor. Here we present evidence for the formation of a transient radical on Trp171 using spin-trapping in combination with peptide mapping. The spin-trap methyl nitroso propane forms a covalent adduct with Trp171 in the presence of hydrogen peroxide which can be detected by its characteristic visible absorbance spectrum. A very similar chromophore can be obtained in a small molecular model system from N-acetyl tryptophanamide, the spin-trap, and a single-electron abstracting system. The precise site the spin-trap is attached to could be identified in a crystal structure of spin-trap/hydrogen peroxide-treated enzyme as the C6 atom of the indole ring of Trp171. These results indicate that Trp171 is redox-active and that it forms an indole radical by transfer of an electron to the heme of compound I and/or II. Apart from cytochrome c peroxidase and DNA photolyase, lignin peroxidase appears to be the third enzyme only which utilizes a tryptophan residue as an integral part of its redox catalysis.  相似文献   

12.
Indoleamine 2,3-dioxygenase (IDO) is an heme-containing enzyme involved in the regulation of important immunological responses and neurological processes. The enzyme catalyzes the oxidative cleavage of the pyrrole ring of the indole nucleus of tryptophan (Trp) to yield N-formylkynurenine, that is the initial and rate limiting step of the kynurenine pathway. Some indole derivatives have been reported to act as effectors of the enzyme by enhancing its catalytic activity. On the basis of the recent availability of the crystal structure of IDO, in this work we investigate substrate recognition and enhancer binding to IDO using molecular docking experiments. In addition, conformational transitions of IDO in response to substrate and enhancer binding are studied using coarse graining simulations with the program FIRST. The results enable us to identify (i) the binding site of enhancer modulators; (ii) the motion of an electrostatic gate that regulates the access of the substrate to the catalytic site of the enzyme; (iii) the movement of the anchoring region of a hairpin loop that may assist the shuttle of substrates/products to/from the catalytic site of IDO. These data, combined with available site-directed mutagenesis experiments, reveal that conformational transitions of IDO in response to substrate and enhancer binding are controlled by distinct combination of two conformational states (open and close) of the above structural motifs. On this basis, a molecular mechanism regarding substrate recognition and activity enhancement by indole derivatives is proposed.  相似文献   

13.
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.  相似文献   

14.
Zhang Y  Deshpande A  Xie Z  Natesh R  Acharya KR  Brew K 《Glycobiology》2004,14(12):1295-1302
Aromatic amino acids are frequent components of the carbohydrate binding sites of lectins and enzymes. Previous structural studies have shown that in alpha-1,3 galactosyltransferase, the binding site for disaccharide acceptor substrates is encircled by four tryptophans, residues 249, 250, 314, and 356. To investigate their roles in enzyme specificity and catalysis, we expressed and characterized variants of the catalytic domain of alpha-1,3 galactosyltransferase with substitutions for each tryptophan. Substitution of glycine for tryptophan 249, whose indole ring interacts with the nonpolar B face of glucose or GlcNAc, greatly increases the K(m) for the acceptor substrate. In contrast, the substitution of tyrosine for tryptophan 314, which interacts with the beta-galactosyl moiety of the acceptor and UDP-galactose, decreases k(cat) for the galactosyltransferase reaction but does not affect the low UDP-galactose hydrolase activity. Thus, this highly conserved residue stabilizes the transition state for the galactose transfer to disaccharide but not to water. High-resolution crystallographic structures of the Trp(249)Gly mutant and the Trp(314)Tyr mutant indicate that the mutations do not affect the overall structure of the enzyme or its interactions with ligands. Substitutions for tryptophan 250 have only small effects on catalytic activity, but mutation of tryptophan 356 to threonine reduces catalytic activity for both transferase and hydrolase activities and reduces affinity for the acceptor substrate. This residue is adjacent to the flexible C-terminus that becomes ordered on binding UDP to assemble the acceptor binding site and influence catalysis. The results highlight the diverse roles of these tryptophans in enzyme action and the importance of k(cat) changes in modulating glycosyltransferase specificity.  相似文献   

15.
As a first step in investigations of the properties of crystalline enzymes, the binding of indole, N-formyl-l-phenylalanine, and N-formyl-l-p-iodophenylalanine to α-chymotrypsin crystals, and the binding of indole to tosyl-α-chymotrypsin crystals, has been studied. The methods used were spectrophotometric measurements of the concentration of indole in the supernatant, or measurements of the concentration of radioactively labeled indole in both the supernatant and the crystal. The dissociation constants of the specific binding site of the crystalline enzyme have been determined for indole and N-formyl-l-phenylalanine. It was found that indole does not bind to tosyl-α-chymotrypsin crystals and that N-formyl-p-iodophenylalanine does not bind to the substrate binding site of the crystalline enzyme.The information obtained from these simple equilibrium measurements is in agreement with X-ray diffraction studies. The approach is, therefore, capable of determining whether or not compounds bind to the active site of a crystalline enzyme, and whether the occupancy of this site is sufficient for structure determinations using X-ray diffraction methods.  相似文献   

16.
Active site Ser-195-fluorine-labeled derivatives of alpha-chymotrypsin were prepared from a series of N-(trifluoromethylphenyl)-fluorosulfonylphenyl carboxamides whose synthesis is described. The six new 19F spin labels varied in the position of the -CF3 substituent (o-, m-, and p-) and the fluorosulfonyl substituent (m- or p-). The chemical shifts of these covalently bound analogs of "tosyl-chymotrypsin" were each uniquely sensitive to their environment in the catalytic center as evidenced by differences in resonance line position for each label. Upon titrating these derivatives with the reversible competitive inhibitor, indole, a downfield shift was observed (with all but one label), which could be fit in each case to an apparent dissociation constant for indole binding. Indole binding to the p-sulfonyl derivatives was essentially unaltered from that for the native enzyme, while the m-sulfonyl derivatives required some additional free energy of binding to saturate the enzyme. The results are consistent with a partial embedding of the phenylsulfonyl moiety in the aromatic specificity pocket.  相似文献   

17.
Myoglobin (Mb) is used as a model system for other heme proteins and the reactions they catalyze. The latest novel function to be proposed for myoglobin is a P450 type hydroxylation activity of aromatic carbons (Watanabe, Y., and Ueno, T. (2003) Bull. Chem. Soc. Jpn. 76, 1309-1322). Because Mb does not contain a specific substrate binding site for aromatic compounds near the heme, an engineered tryptophan in the heme pocket was used to model P450 hydroxylation of aromatic compounds. The monooxygenation product was not previously isolated because of rapid subsequent oxidation steps (Hara, I., Ueno, T., Ozaki, S., Itoh, S., Lee, K., Ueyama, N., and Watanabe, Y. (2001) J. Biol. Chem. 276, 36067-36070). In this work, a Mb variant (F43W/H64D/V68I) is used to characterize the monooxygenated intermediate. A modified (+16 Da) species forms upon the addition of 1 eq of H2O2. This product was digested with chymotrypsin, and the modified peptide fragments were isolated and characterized as 6-hydroxytryptophan using matrix-assisted laser desorption ionization time-of-flight tandem mass spectroscopy and 1H NMR. This engineered Mb variant represents the first enzyme to preferentially hydroxylate the indole side chain of Trp at the C6 position. Finally, heme extraction was used to demonstrate that both the formation of the 6-hydroxytryptophan intermediate (+16 Da) and subsequent oxidation to form the +30 Da final product are catalyzed by the heme cofactor, most probably via the compound I intermediate. These results provide insight into the mechanism of hydroxylation of aromatic carbons by heme proteins, demonstrating that non-thiolate-ligated heme enzymes can perform this function. This establishes Mb compound I as a model for P450 type aromatic hydroxylation chemistry.  相似文献   

18.
Quinohemoprotein amine dehydrogenase (QH-AmDH) catalyzes the oxidative deamination of aliphatic and aromatic amines. The enzyme from Pseudomonas putida has an alpha beta gamma heterotrimeric structure with two heme c groups in the largest alpha subunit, and a novel quinone cofactor [cysteine tryptophylquinone (CTQ)] and hitherto unknown internal cross-bridges in the smallest gamma subunit. The crystal structure of the enzyme in the complex with the inhibitor [p-nitrophenylhydrazine (pNPH)] has been determined at a 2.0 A resolution.(1) The hydrazone of the cofactor with the inhibitor was nicely modeled into the omit electron density map, identifying the C6 carbonyl group as the reactive site of the cofactor. The Asp33 gamma is unambiguously determined as the catalytic base to abstract the alpha-proton from a substrate, because N beta atom of the inhibitor corresponding to the C alpha atom of the substrate amine is neighbored to Asp33 gamma. The bound inhibitor is completely enclosed in the active site pocket formed by the residues from the beta- and gamma-subunits. The cofactor-inhibitor adduct may be predominantly in the hydrazone with the azo form as a minor component. The binding of the inhibitor causes minor but important conformational changes in the residues surrounding the active site. The inhibitor may have access to the active site pocket through the water-filled crevice between the beta- and gamma-subunits.  相似文献   

19.
The human Theta class glutathione transferase GSTT2-2 has a novel sulfatase activity that is not dependent on the presence of a conserved hydrogen bond donor in the active site. Initial homology modeling and the crystallographic studies have identified three conserved Arg residues that contribute to the formation of (Arg107 and Arg239), and entry to (Arg242), a sulfate binding pocket. These residues have been individually mutated to Ala to investigate their potential role in substrate binding and catalysis. The mutation of Arg107 had a significant detrimental effect on the sulfatase reaction, while the Arg242 mutation caused only a small reduction in sulfatase activity. Surprisingly, the Arg239 had an increased activity resulting from a reduction in stability. Thus, Arg239 appears to play a role in maintaining the architecture of the active site. Electrostatic calculations performed on the wild-type and mutant forms of the enzyme are in good agreement with the experimental results. These findings, along with docking studies, suggest that prior to conjugation, the location of 1-menaphthyl sulfate, a model substrate for the sulfatase reaction, is approximately midway between the position ultimately occupied by the naphthalene ring of 1-menaphthylglutathione and the free sulfate. It is further proposed that the Arg residues in and around the sulfate binding pocket have a role in electrostatic substrate recognition.  相似文献   

20.
Naphthalene dioxygenase (NDO) fromPseudomonas sp strain NCIB 9816 is a multicomponent enzyme system which initiates naphthalene catabolism by catalyzing the addition of both atoms of molecular oxygen and two hydrogen atoms to the substrate to yield enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDO has a relaxed substrate specificity and catalyzes the dioxygenation of many related 2- and 3-ring aromatic and hydroaromatic (benzocyclic) compounds to their respectivecis-diols. Biotransformations with a diol-accumulating mutant, recombinant strains and purified enzyme components have established that in addition tocis-dihydroxylation, NDO also catalyzes a variety of other oxidations which include monohydroxylation, desaturation (dehydrogenation),O-andN-dealkylation and sulfoxidation reactions. In several cases, the absolute stereochemistry of the oxidation products formed by NDO are opposite to those formed by toluene dioxygenase (TDO). The reactions catalyzed by NDO and other microbial dioxygenases can yield specific hydroxylated compounds which can serve as chiral synthons in the preparation of a variety of compounds of interest to pharmaceutical and specialty chemical industries. We present here recent work documenting the diverse array of oxidation reactions catalyzed by NDO. The trends observed in the oxidation of a series of benzocyclic aromatic compounds are compared to those observed with TDO and provide the basis for prediction of regio- and stereospecificity in the oxidation of related substrates. Based on the types of reactions catalyzed and the biochemical characteristics of NDO, a mechanism for oxygen activation by NDO is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号