首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

DNA polymerases of Candida albicans were purified to near homogeneity. Three well distinguished peaks of DNA polymerase activity (Enzyme I, II and III respectively) were obtained bv DEAE-Sephacel chromatography. This purification step was followed by column chromatographies on Sepharose 6B and denatured DNA-cellulose. The enzymes molecular mass and biochemical properties, including their inhibition by aphidicolin, were studied. Molecular mass was determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and was found to be 110 kDa for Enzyme I, 80 kDa for Enzyme II and 50 kDa for Enzyme III.  相似文献   

2.
Characterization of proteinases from Antarctic krill (Euphausia superba)   总被引:3,自引:0,他引:3  
Fractions of three trypsin-like proteinases, TL I, TL II, and TL III, a chymotrypsin-like proteinase, CL, two carboxypeptidase A enzymes, CPA I and CPA II and two carboxypeptidase B enzymes, CPB I and CPB II, from Antarctic krill (Euphausia superba) have been characterized with respect to purity by the means of capillary electrophoresis, CE, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The masses of the trypsin-like and chymotrypsin-like proteinases were determined to be 25,020, 25,070, 25,060, and 26,260Da for TL I, TL II, TL III, and CL, respectively. The masses of the CPA enzymes are likely 23,170 and 23,260Da, whereas the CPB enzyme masses likely are 33,730 and 33,900Da. The degradation efficiency and cleavage pattern of the trypsin-like proteinases were studied with native myoglobin as a model substrate using CE, MALDI-TOF-MS, and nanoelectrospray mass spectrometry (nESI-MS). The degradation efficiency of the trypsin-like proteinases was found to be approximately 12 and 60 times higher compared to bovine trypsin at 37 degrees C and 1-3 degrees C, respectively. All three fractions of trypsin-like proteinases showed a carboxypeptidase activity in combination with their trypsin activity.  相似文献   

3.
Two GM1-beta-galactosidases, beta-galactosidases I, and II, have been highly purified from bovine brain by procedures including acetone and butanol treatments, and chromatographies on Con A-Sepharose, PATG-Sepharose, and Sephadex G-200. beta-Galactosidase I was purified 30,000-fold and beta-galactosidase II 19,000-fold. Both enzymes appeared to be homogeneous, as judged from the results of polyacrylamide disc gel electrophoresis. Enzyme I had a molecular weight of 600,000-700,000 and enzyme II one of 68,000, as determined on gel filtration. On sodium dodecyl sulfate polyacrylamide slab gel electrophoresis under denaturing conditions, enzyme II gave a single band with a molecular weight of 62,000, while enzyme I gave two minor bands with molecular weights of 32,000 and 20,000 in addition to the major band at 62,000. Both enzymes liberated the terminal galactose from GM1 ganglioside and lactosylceramide but not from galactosylceramide. Enzyme I showed a pH optimum of 4.0 and was heat stable, while enzyme II showed a pH optimum of 5.0 and lost 50% of its activity in 15 min at 45 degrees C. Enzyme I showed a pI of 4.2 and enzyme II one of 5.9.  相似文献   

4.
In order to use leakage of lysosomal acid phosphatase (AP) as a biomarker of stress to earthworms, more information about AP’s in earthworms are needed. This paper describes the details about tentatively classified APs in the earthworm Eisenia veneta. Two isoenzymes (enzyme I and II) of acid phosphatase (AP) and one alkaline phosphatase (enzyme III) from the earthworm E. veneta were separated by gel filtration. All three enzymes were further purified and concentrated on a Con A Sepharose 4B column. Enzyme I was inhibited by tartrate, showed an optimal pH range between 4.0 and 5.0 and was assumed to be of lysosomal origin. Enzyme II was the major enzyme showing the highest activity of the three enzymes. It was expected to be a lysosomal AP under physiological conditions. Enzyme II had a molecular mass 113 kDa and was composed of apparently identical polypeptide chains of 36 kDa each. This enzyme was inhibited by tartrate, showed an optimal pH in the range 6.0–7.5 and was slowly degraded at temperatures above 40°C. Enzyme III is not inhibited by tartrate and has a pH-optimum >9. The subcellular location under physiological conditions was assumed to be the cytosol.  相似文献   

5.
Four extracellular proteolytic enzymes (I-IV) (EC 3.4.22.-) were identified in static cultures of Chromobacterium lividum (NCIB 10926) by agar gel electrophoresis and isoelectric focusing. Proteinases I-III were freed of non-enzymic protein by chromatography on TEAE-cellulose and CM-cellulose. The enzyme mixture was then fractionated in a pH gradient by isoelectric focusing. All three enzymes were shown to be heat-labile metallo-enzymes. Optimal activity occurred at pH 5.6 for enzyme I and at pH 6.2 for enzymes II and III. Remazolbrilliant Blue-hide powder was a sensitive substrate for these enzymes. Proteinase I was also shown to degrade haemoglobin and casein effectively, but not myoglobin, ovalbumin or bovine serum albumin. Proteinases I-III exhibited molecular weight values of 75 000, 72 000 and 67 000 by exclusion chromatography and 71 000 and 66 000 by sodium dodecyl sulphate-poly-acrylamide-gel electrophoresis for enzyme I and II, respectively. The amino acid compositions of enzymes I and II were somewhat similar. Proteinase I was inhibited by EDTA, 1,2-di(2-aminoethoxy)ethane-N,N,N',N'-tetraacetic activity. Mg2+ could substitute for Ca2+ or Mn2+ for Co2+. The interrelationship of proteinases I-III is discussed.  相似文献   

6.
A complex of proteases was fractionated into three enzymes by chromatography of a crude enzyme preparation obtained from culture fluid of the fungus Mucor renninus on biospecific polystyrene adsorbent. Electrophoretically homogeneous proteases I-III were obtained by subsequent rechromatography on biospecific adsorbent and gel filtration on Sephadex G-75. Optimal proteolytic activities occurred at pH 4.25; 3.5 and 2.5 for enzymes I, II and III, respectively. Milk-clotting activity was exhibited only by protease II. All three proteases hydrolysed haemoglobin, Na caseinate and bovine serum albumin. Enzyme I hydrolysed Na caseinate the most effectively, while haemoglobin was the most effective substrate for proteases II and III. Trypsinogen was activated only by protease I. All three enzymes have a molecular weight ~35 000 as determined by gel chromatography on Sephadex G-75 column and by sodium dodecylsulphate disc electrophoresis. Isoelectric points, pH-stability range, amino acid composition, carbohydrate content were determined for each enzyme and the influence of metal ions (Ca2+, Mg2+, Cu2+, Co2+) on proteolytic activities of these enzymes studied.  相似文献   

7.
DNA polymerases of Candida albicans were purified to near homogeneity. Three well distinguished peaks of DNA polymerase activity (Enzyme I, II and III respectively) were obtained by DEAE-Sephacel chromatography. This purification step was followed by column chromatographies on Sepharose 6B and denatured DNA-cellulose. The enzymes' molecular mass and biochemical properties, including their inhibition by aphidicolin, were studied. Molecular mass was determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and was found to be 110 kDa for Enzyme I, 80 kDa for Enzyme II and 50 kDa for Enzyme III.  相似文献   

8.
DNA polymerases from bakers' yeast.   总被引:21,自引:0,他引:21  
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molecular weight (greater than 100,000) but are clearly separate species by the lack of immunological cross-reactivity. Analysis of associated enzyme activities and other reaction properties of yeast DNA polymerases provides additional evidence for distinguishing the two species. Enzyme I has no associated nuclease activity but does carry out pyrophosphate exchange and pyrophosphorolysis reactions, and has an associated 3'-exonuclease activity. Enzyme I does not degrade deoxynucleoside triphosphates and cannot utilize a mismatched template. Enzyme II does carry out a template-dependent deoxynucleoside triphosphate degradation reaction and can excise mismatched 3'-nucleotides from suitable template systems. Earlier studies have shown that both Enzyme I and Enzyme II are inhibited by N-ethylmaleimide. The yeast enzymes are not identical to any known eukaryotic or prokaryotic DNA polymerases. In general, Enzyme I appears to be most similar to eukaryotic DNA polymerase alpha and Ezyme II exhibits properties of prokaryotic DNA polymerases II and III.  相似文献   

9.
Abstract

The present investigation describes the comparative properties, particularly the substrate specificity of three kallikrein-like serine proteinases (I, II and III) purified from rat submandibular gland extract (Bedi, G.S., Prep. Biochem. 22, 67–81. 1992). The physico-chemical and immunological properties of three proteinases were compared by Western blot analysis, immunodiffusion, immuno-electrophoresis, amino terminal sequence analysis, molecular weight determination and isoelectric focusing. Detailed substrate specificity of these proteinases was determined using chromogenic substrates, synthetic peptides and native proteins. The chromogenic substrate tosyl-gly-pro-arg-pNA was hydrolyzed preferentially by Proteinase I. The replacement of pro at the P2 position with bulky hydrophobic residues phe and leu completely abolished the hydrolysis by Proteinase I. The hydrolysis of the chromogenic substrates by Proteinase II was also affected by the amino acid residue present at the P2 position in the order of pro>gly>val>leu>phe. Neither Proteinase I nor Proteinase II hydrolyzed substrates in which arg was replaced with lys at the P1 position. Proteinase III was reactive against all the chromogenic substrates with arg or lys at the P1 position. Synthetic polypeptides T-kinin-leu and insulin B chain were resistant to cleavage by both Proteinase I and II and were cleaved specifically at arg-X peptide bond by Proteinase III. Tonin-like activity of Proteinase II was confirmed by cleavage of the angiotensin 1–14 at phe-his linkage to generate two fragments DRVYIHPF and HLLVYS respectively. All three proteinases cleaved human high molecular weight kininogen but only Proteinase III could cleave T-kininogen. Proteinase III was also reactive towards human and bovine fibronectin, fibrinogen and gelatin. Several other salivary and serum proteins were resistant to cleavage by these proteinases. Although the three enzymes are immunologically related, they differ with respect to size, isoelectric point, amino terminal sequence and inhibition profile.  相似文献   

10.
Two fish aminopeptidases designated as aminopeptidases I and II were purified by DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. The final preparations of enzymes I and II were judged nearly homogenous by polyacrylamide gel I, electrophoresis. The molecular weights of enzymes I and II were determined by gel filtration to be 370,000 and 320,000, respectively. The isoelectric points were 4.1 (I) and 4.8 (II), Both enzymes were inhibited by EDTA and activated by Co++. Bestatin could inhibit enzyme I but not enzyme II. Enzymes I and II rapidly hydrolyzed not only synthetic substrates containing alanine or leucine but also di-, tri-, and tetra-alanine. Judged from all of these properties, sardine aminopeptidases resemble human alanine aminopeptidase. Enzyme I retained more than 70% of its original activity in 15% NaCl, suggesting the enzyme participates in hydrolyzing fish proteins and peptides during fish sauce production.  相似文献   

11.
Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterization of the major Ang II-forming, neutral serine proteinase, from left ventricular tissues of the human heart. A 115,150-fold purification from human cardiac membranes yielded a purified protein with an Mr of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based upon its amino-terminal sequence, the major human cardiac Ang II-forming proteinase appears to be a novel member of the chymase subfamily of chymotrypsin-like serine proteinases. Human heart chymase was completely inhibited by the serine proteinase inhibitors, soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, and chymostatin. It was partially inhibited by p-tosyl-L-phenylalanine chloromethyl ketone, but was not inhibited by p-tosyl-L-lysine chloromethyl ketone, and aprotinin. Also, human heart chymase was not inhibited by inhibitors of the other three classes of proteinases. Human heart chymase has a high specificity for the conversion of Ang I to Ang II and the Ang I-carboxyl-terminal dipeptide His-Leu (Km = 60 microM; Kcat = 11,900 min-1; Kcat/Km = 198 min-1 microM-1). Human heart chymase did not degrade several peptide hormones, including Ang II, bradykinin, and vasoactive intestinal peptide, nor did it form Ang II from angiotensinogen. The high substrate specificity of human heart chymase for Ang I distinguishes it from other Ang II-forming enzymes including Ang I converting enzyme, tonin, kallikrein, cathepsin G, and other known chymases.  相似文献   

12.
Two lytic enzymes (enzyme I and enzyme II) that lysed Micrococcus lysodeikticus were isolated from the crude extract of Polysphondylium pallidum myxamoebae grown in the presence of Klebsiella aerogenes by precipitation with protamine sulfate and by chromatography on DEAE-Sepharose CL-6B. Enzyme I was further purified by gel filtration on a Superose12 column, and enzyme II by chromatography on a MonoQ HR 5/5 column and gel filtration on a Superose12 column. Enzyme I was a basic protein, while enzyme II was acidic. The molecular weights of enzyme I and II were about 14,000 and 22,000, respectively by SDS-polyacrylamide gel electrophoresis. Optimum pHs for the activity were 5.0 for enzyme I and between 3.5 and 4.0 for enzyme II. The maximum activity of enzyme I and II was obtained at 65°C and 45°C to 55°C and at ionic strength of 0.0075 to 0.03 and 0.06, respectively. Both enzymes cleaved the glycosidic bond of β(1,4)-N-acetylmuramyl-acetylglucosamine of the cell wall peptidoglycan of Micrococcus lysodeikticus. These results indicate that the two lytic enzymes of Polysphondylium pallidum myxamoebae are N-acetylmuramidases.  相似文献   

13.
Five glutathione transferase (GST) forms were purified from human uterus by glutathione-affinity chromatography followed by chromatofocusing, and their structural, kinetic and immunological properties were investigated. Upon SDS/polyacrylamide slab gel electrophoresis all forms resulted composed of two subunits of identical molecular size. GST V (pI 4.5) is a dimer of 23-kDa subunits. GST I (pI 6.8) and GST IV (pI 4.9) are dimers of 24-kDa subunits whereas GST II (pI 6.1) and GST III (pI 5.5) are dimers of 26.5-kDa subunits. GST V accounts for about 85-90% of the activity whereas the other isoenzymes are present in trace quantities. On the basis of the molecular mass of the subunits, amino acid composition, substrate specificities, sensitivities to inhibitors, CD spectra and immunological studies, GST V appeared very similar to transferase pi. Structural and immunological studies provide evidence that GST IV is closely related to the less 'basic' transferase (GST pI 8.5) of human skin. Extensive similarities have been found between GST II and GST III. The comparison includes amino acid compositions, subunits molecular size and immunological properties. The two enzymes, however, are kinetically distinguishable. The data presented also indicate that GST II and GST III are related to transferase mu and to transferase psi of human liver. Even though GST I has a subunit molecular mass identical to GST IV, several lines of evidence, including catalytic and immunological properties, indicate that they are different from each other. GST I seems not to be related to any of known human transferases, suggesting that it may be specific for the uterus.  相似文献   

14.
  • 1.1. A partially purified krill extract (enzymatic debrider) intended for clinical use was electrophoretically characterized by polyacrylamide gel electrophoresis (PAGE) and by crossed immunoelectrophoresis (CIE) using polyclonal rabbit antibodies.
  • 2.2. Three main types of proteolytic enzymes (serine proteinase, carboxypeptidase A and B) with mol. wts of 33,000, 28,000 and 35,000, respectively, could be separated by SDS—g-PAGE under reducing conditions.
  • 3.3. Routine CIE analysis of krill samples revealed four protease-active immunoprecipitates. Two of these precipitates were associated with the proteinase activity, one with carboxypeptidase A and one with carboxypeptidase B.
  • 4.4. Improving resolution of CIE by extending electrophoresis in the first dimension permitted separation of three serine proteinases of which two were isozymes (II and III) and the third one was unique (I).
  • 5.5. Furthermore carboxypeptidase A could also be separated into two isozymes (AI and AII) while carboxypeptidase B still exhibited one single component.
  • 6.6. Six individual immunoprecipitates were thus identified and proved to be related to the protease activity. Highly purified enzymes were used as references in CIE and tandem-CIE to establish identification of each enzyme in the krill mixture.
  相似文献   

15.
Acid phosphatase associated with rat liver lysosomal membranes (M-APase) was purified about 4,200-fold over the homogenate with 10% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence of SDS. The purification procedure included; preparation of lysosomal membranes, solubilization of the membranes with 1% Triton X-100, immunoaffinity chromatography, and gel filtration with FPLC equipped with a Sephacryl S-300HR column. The molecular weight, estimated by gel filtration through TSK SW 3000G, was approximately 320K and SDS gel electrophoresis showed that the enzyme is composed of four identical subunits with an apparent molecular weight of 67K. The enzyme contains about 24.3% carbohydrate consisting of mannose, galactose, fucose, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylneuraminic acid in a molar ratio of 38:20:5:36:4:11, respectively. In addition, three soluble forms of acid phosphatase (C-APase I, II, and III) in lysosomal contents were separated from rat liver lysosomal contents with DEAE-Sephacel. These three enzymes were also purified using immunoaffinity chromatography followed by gel filtration. C-APase I, II, III, and M-APase have isoelectric points of 7.7-8.2, 6.6-7.0, 5.7-6.7, and 3.4-3.8, respectively. All four APases are sensitive to endo-beta-N-acetylglucosaminidase H. However, only C-APase III and M-APase are digestible with neuraminidase. Susceptibility of M-APase to neuraminidase in intact tritosomes was examined to study the topography of M-APase in tritosomal membranes. Neuraminidase susceptibility of M-APase was not observed in the intact tritosomes until the tritosomes had been disrupted by osmotic shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Three forms of endopolygalacturonase from Saccharomyces fragilis (Kluyveromyces fragilis) were separated by a procedure including adsorption on Amberlite IRC-50, CM Sephadex C-50 column chromatography and repeated preparative disc electrophoresis. Each endo-PG was almost homogenoeus as judged by polyacrylamide gel electrofocusing and disc electrophoresis. The three enzyme were designated as enzymes I, II and III. Enzymes I and II were similar but enzyme HI different from I and II in isoelectric point. The three enzymes resembled one another in eznyme action on pectic acid and other properties. All the three enzymes showed macerating activity toward the potato and carrot tissues.  相似文献   

17.
Two Ca2+-activated neutral proteinases have been prepared to a high degree of purity from rabbit skeletal muscle. One, calpain I, is optimally activated by 100 microM Ca2+ and the other, calpain II, by 1 to 2 mM Ca2+. Both enzymes have two subunits of molecular weight 80 000 and 28 000. Antibodies have been raised against the native forms of both enzyme. It was found that the antibody to native calpain I reacted only with calpain I and not with calpain II, and similarly the antibody to native calpain II reacted only to calpain II. This suggested that the epitopes in the two enzymes are located in regions that are structurally different. However, immunoblotting of the denatured calpains after SDS-polyacrylamide-gel electrophoresis revealed cross-reaction between the two subunits for both enzymes. Therefore, although the denatured enzymes have common antigenic sites it would appear that these are not exposed equally in the native proteins.  相似文献   

18.
1. Dipeptidyl peptidases (DPP) II and III from porcine spleen have been purified to homogeneity as assessed by disc gel electrophoresis, HPLC and chromatofocusing. 2. The enzyme are both inhibited by diisopropylfluorophosphate suggesting that the active site contains an essential serine residue, but they are also inhibited by a variety of other reagents. 3. The pI of DPP II is 4.8, that of DPP III, 4.0. 4. The former enzyme has a molecular weight of 97,000, the latter 66,000 and both are glycoproteins. 5. The enzymes are compared with those from other sources.  相似文献   

19.
Three forms of α-glucosidase (EC 3.2.1.20), designated as I, II, and III, have been isolated from suspension-cultured rice cells by a procedure including fractionation with ammonium sulfate, CM-cellulose column chromatography, and preparative disc gel electrophoresis. The three enzymes were homogeneous by Polyacrylamide disc gel electrophoresis. α-Glucosidase I was secreted in the culture medium during growth, α-glucosidase II was readily extracted from rice cells with the buffer alone, and α-glucosidase III required NaCl to be solubilized. The molecular weights of the three enzymes were 96,000 (I), 84,000 (II), and 58,000 (III). The three enzymes readily hydrolyzed maltose, maltotriose, maltotetraose, amylose, and soluble starch. α-Glucosidase I possessed strong isomaltose-hydrolyzing activity and hydrolyzed isomaltose about three times as rapidly as α-glucosidase III. The three enzymes produced panose as the main α-glucosyltransfer product from maltose. Half the maltose-hydrolyzing activities of the three enzymes were inhibited by 11.25 ng of castanospermine. The inhibition was competitive.  相似文献   

20.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号