首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arkadia is a positive regulator of transforming growth factor (TGF)-β signalling that induces ubiquitin-dependent degradation of several inhibitory proteins of TGF-β signalling through its C-terminal RING domain. We report here that, through yeast-two-hybrid screening for Arkadia-binding proteins, the μ2 subunit of clathrin-adaptor 2 (AP2) complex was identified as an interacting partner of Arkadia. Arkadia was located in both the nucleus and the cytosol in mammalian cells. The C-terminal YXXΦ-binding domain of the μ2 subunit associated with the N-terminal YALL motif of Arkadia. Arkadia ubiquitylated the μ2 subunit at Lys130. In addition, Arkadia interacted with the AP2 complex, and modified endocytosis of epidermal growth factor receptor (EGFR) induced by EGF. Arkadia thus appears to regulate EGF signalling by modulating endocytosis of EGFR through interaction with AP2 complex.  相似文献   

2.
E3 ubiquitin ligases play a key role in the recognition of target proteins and the degradation by 26S proteasomes. Arkadia is the first example of an E3 ubiquitin ligase that positively regulates TGF-β family signaling. It has been shown to induce ubiquitin-dependent degradation of negative regulators of TGF-β signaling through its C-terminal RING domain. Structural analysis of Arkadia RING domain is needed to elucidate its enzymatic properties. For such studies efficient production of pure and correctly folded Arkadia protein is required. Here we report the recombinant expression in Escherichia coli and purification of the C-terminal RING domain of Arkadia. NMR analysis of the soluble construct reveals a stable folded protein suitable for high resolution structural studies.  相似文献   

3.
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-β signaling, and knockdown of endogenous RB1CC1 attenuated TGF-β-induced expression of target genes as well as TGF-β-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-β signaling by restricting substrate specificity of Arkadia.  相似文献   

4.
The transforming growth factor-β (TGF-β) pathway regulates diverse cellular processes. It signals via serine/threonine kinase receptors and intracellular Smad and non-Smad effector proteins. In cancer cells, aberrant TGF-β signalling can lead to loss of growth inhibition and an increase in invasion, epithelial-to-mesenchymal transition (EMT) and metastasis. Therapeutic targeting of the pro-oncogenic TGF-β responses is currently being explored as a potential therapy against certain invasive and metastatic cancer types. The ubiquitin post-translational regulation system is emerging as a key regulatory mechanism for the control of TGF-β pathway components. In this review, we focus on the role of deubiquitinases (DUBs), which counteract the activity of E3 ubiquitin ligases. We will discuss the mechanisms by which specific DUBs control Smad and non-Smad TGF-β signalling routes, and how perturbation of the expression and function of DUBs contributes to misregulation of TGF-β signalling in cancer.  相似文献   

5.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates a wide variety of cellular processes including proliferation, differentiation, and extracellular matrix deposition. Dysregulation of TGF-β signaling is associated with several diseases such as cancer and tissue fibrosis. TGF-β signals through two transmembrane proteins known as the type I (TGFBR1) and type II (TGFBR2) receptors. The levels of these receptors at the cell surface are tightly regulated by several mechanisms, including degradation following recruitment of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor (Smurf) 2 by SMAD7. In addition, TGF-β co-receptors can modulate TGF-β signaling receptor activity in a cell-specific manner. We have previously identified a novel TGF-β co-receptor, CD109, a glycosyl phosphatidylinositol (GPI)-anchored protein that negatively regulates TGF-β signaling. Despite CD109's potential relevance as a regulator of TGF-β action in vivo, the mechanisms by which CD109 regulates TGF-β signaling are still incompletely understood. Previously, we have shown that CD109 downregulates TGF-β signaling by promoting TGF-β receptor localization into the lipid raft/caveolae compartment and by enhancing TGF-β receptor degradation. Here, we demonstrate that CD109 enhances SMAD7/Smurf2-mediated degradation of TGFBR1 in a ligand-dependent manner. Moreover, we show that CD109 regulates the localization and the association of SMAD7/Smurf2 with TGFBR1. Finally, we demonstrate that CD109's inhibitory effect on TGF-β signaling and responses require SMAD7 expression and Smurf2 ubiquitin ligase activity. Taken together, these results suggest that CD109 is an important regulator of SMAD7/Smurf2-mediated degradation of TGFBR1.  相似文献   

6.
Rodriguez I 《PloS one》2011,6(4):e18418
Acquisition of a final shape and size during organ development requires a regulated program of growth and patterning controlled by a complex genetic network of signalling molecules that must be coordinated to provide positional information to each cell within the corresponding organ or tissue. The mechanism by which all these signals are coordinated to yield a final response is not well understood. Here, I have characterized the Drosophila ortholog of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger proteins that belong to the Krüppel-like factor (KLF) family and were initially identified in human osteoblasts and pancreatic tumor cells for the ability to enhance TGF-β response. Using the developing wing of Drosophila as "in vivo" model, the dTIEG function has been studied in the control of cell proliferation and patterning. These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG also regulates the activity of JAK/STAT pathway suggesting a conserved role of TIEG proteins as positive regulators of TGF-β signalling and as mediators of the crosstalk between signalling pathways acting in a same cellular context.  相似文献   

7.
8.
9.
The knowledge of transforming growth factor (TGF)-β receptors has greatly progressed in the recent years. TGF-β receptors type I and II have been implicated in the modulation of cell proliferation, whereas type III (betaglycan) may act as a component presenting TGF-β to its signaling receptors. In addition, four other proteins that bind TGF-β1 or TGF-β2 have been recently identified in some cell lines, three being anchored to the membrane through a glycosylphosphatidylinositol (GPI). Despite this knowledge, the molecular mechanism of signal transduction through the TGF-β receptors remain an enigma. TGF-β family does not signal via any of the classical pathways. As GPI anchors of membrane proteins have been implicated in the transduction of some hormonal effects, we investigated the putative role of GPI in signaling the TGF-β effects on the proliferation of rabbit articular chondrocytes (RAC). We previously showed that TGF-β1 increased DNA replication rate of RAC, with a recruitment of cells in G2/M followed by a subsequent mitosis wave. Here, we find that the factor causes specific GPI hydrolysis, with correlated increase of inositolphosphate glycan (IPG). This effect was specifically inhibited by antibodies that bind TGF-β1. Using [3H]-inositol labeling and Triton X-114 extraction, we demonstrate that a hydrophobic material from the membrane is cleaved by treatment of cell cultures with phosphatidylinositol specific phospholipase C (PI-PLC) or by exposure to TGF-β, supporting that a PI-anchored molecule gives rise to IPG by TGF-β-induced hydrolysis. The biological relevance of this hydrolysis was demonstrated by the enhancing effect of purified IPG on the DNA synthesis rate, which mimicked the TGF-β action. These results demonstrate that IPG could be an early messenger in the cellular signaling that mediates the effect of TGF-β on RAC growth. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Transforming growth factor-β (TGF-β) has roles in embryonic development, the prevention of inappropriate inflammation and tumour suppression. However, TGF-β signalling also regulates pathological epithelial-to-mesenchymal transition (EMT), inducing or progressing a number of diseases ranging from inflammatory disorders, to fibrosis and cancer. However, TGF-β signalling does not proceed linearly but rather induces a complex network of cascades that mutually influence each other and cross-talk with other pathways to successfully induce EMT. Particularly, there is substantial evidence for cross-talk between αV integrins and TGF-β during EMT, and anti-integrin therapeutics are under development as treatments for TGF-β-related disorders. However, TGF-β's complex signalling network makes the development of therapeutics to block TGF-β-mediated pathology challenging. Moreover, despite our current understanding of integrins and TGF-β function during EMT, the precise mechanism of their role during physiological versus pathological EMT is not fully understood. This review focuses on the circle of regulation between αV integrin and TGF-β signalling during TGF-β induced EMT, which pose as a significant driver to many known TGF-β-mediated disorders.  相似文献   

11.
In advanced cancer, including glioblastoma, the transforming growth factor β (TGF-β) pathway acts as an oncogenic factor and is considered to be a therapeutic target. Using a functional RNAi screen, we identified the deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) as a key component of the TGF-β signaling pathway. USP15 binds to the SMAD7-SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) complex and deubiquitinates and stabilizes type I TGF-β receptor (TβR-I), leading to an enhanced TGF-β signal. High expression of USP15 correlates with high TGF-β activity, and the USP15 gene is found amplified in glioblastoma, breast and ovarian cancer. USP15 amplification confers poor prognosis in individuals with glioblastoma. Downregulation or inhibition of USP15 in a patient-derived orthotopic mouse model of glioblastoma decreases TGF-β activity. Moreover, depletion of USP15 decreases the oncogenic capacity of patient-derived glioma-initiating cells due to the repression of TGF-β signaling. Our results show that USP15 regulates the TGF-β pathway and is a key factor in glioblastoma pathogenesis.  相似文献   

12.
13.
《Autophagy》2013,9(5):645-647
Transforming growth factor-β (TGF-β) has broad impacts on an array of diverse cellular functions including cell growth, differentiation, adhesion, migration, and apoptosis. Perturbations of the TGF-β signaling pathways are involved in progression of various tumors. Autophagy is a pivotal response of normal and cancer cells to environmental stresses and is induced by various stimuli. Otherwise, autophagy has an intrinsic function in tumor suppression. Recently, we demonstrated that TGF-β induces autophagy in hepatocellular carcinoma cells and mammary carcinoma cells. Autophagy activation by TGF-β is mediated through the Smad and JNK pathways. We show that siRNA-mediated knockdown of autophagy genes suppresses the growth inhibitory function of TGF-β and that autophagy activation potentiates TGF-β-mediated induction of proapoptotic genes, Bim and Bmf, in hepatoma cells. In this context, the autophagy pathway might contribute to the growth inhibitory effect of TGF-β, in conjunction with other anti-proliferative pathways downstream of TGF-β signaling. The context and manner by which the TGF-β signaling pathway regulates autophagy have implications for a better understanding of pathological and bidirectional roles of TGF-β signaling pathways in tumorigenesis.  相似文献   

14.
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.  相似文献   

15.
16.
Caggia S  Libra M  Malaponte G  Cardile V 《Cytokine》2011,56(2):403-410
Transforming growth factor-β (TGF-β) is the prototype of a family of secreted polypeptide growth factors. These cytokines play very important roles during development, as well as in normal physiological and disease processes, by regulating a wide array of cellular processes, such as cell growth, differentiation, migration, apoptosis, and extracellular matrix production. TGF-β utilizes a multitude of intracellular signalling pathways in addition to Smads with actions that are dependent on circumstances, including dose, target cell type, and context. The aims of this research were (i) to verify the effects of dose-dependent TGF-β3 treatment on YY1 and p53 expression, in BPH-1 cell line, human benign prostate hyperplasia, and two prostate cancer cell lines, LNCaP, which is androgen-sensitive, and DU-145, which is androgen-non responsive, (ii) establish a correlation between p53 and YY1 and (iii) determine the expression of a number of important intracellular signalling pathways in TGF-β3-treated prostate cell lines. The expression of YY1, p53, PI3K, AKT, pAKT, PTEN, Bcl-2, Bax, and iNOS was evaluated through Western blot analysis on BPH-1, LNCaP, and DU-145 cultures treated with 10 and 50 ng/ml of TGF-β3 for 24 h. The production of nitric oxide (NO) was determined by Griess reagent and cell viability through MTT assay. The results of this research demonstrated profound differences in the responses of the BPH-1, LNCaP, and DU-145 cell lines to TGF-β3 stimulation. We believe that the findings could be important because of the clinical relevance that they may assume and the therapeutic implications for TGF-β treatment of prostate cancer.  相似文献   

17.
Type 2 diabetes mellitus (T2DM) leads to monocyte dysfunction associated with atherogenesis and defective arteriogenesis. Transforming growth factor (TGF)-β1, placenta growth factor (PlGF)-1 and vascular endothelial growth factor (VEGF)A play important roles in atherogenesis and arteriogenesis. VEGF-receptor (VEGFR)-mediated monocyte migration is inhibited in T2DM (VEGFA resistance), while TGF-β1-induced monocyte migration is fully functional. Therefore, we hypothesize that TGF-β antagonises the VEGFA responses in human monocytes. We demonstrate that monocytes from T2DM patients have an increased migratory response towards low concentrations of TGF-β1, while PlGF-1/VEGFA responses are mitigated. Mechanistically, this is due to increased expression of type II TGF-β receptor in monocytes under high-glucose conditions and increased expression of soluble (s)VEGFR1, which is known to interfere with VEGFA signalling. VEGFA resistance in monocytes from T2DM patients can be rescued by either experimental down-regulation of TGF-β receptor expression in vitro or by functional blocking of TGF-β signalling using either a TGF-β receptor kinase inhibitor or a TGF-β neutralizing antibody. Our data demonstrate that both T2DM and high-glucose potentiate the TGF-β pathway. TGF-β signalling impairs VEGFR-mediated responses in T2DM monocytes and in this way contributes to mononuclear cell dysfunction, provide novel insights into T2DM vascular dysfunction.  相似文献   

18.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

19.
20.
Transforming growth factor (TGF)-β family proteins are synthesized as precursors that are cleaved to generate an active ligand. Previous studies suggest that TGF-β activity can be controlled by lysosomal degradation of both precursor proteins and ligands, but how these soluble proteins are trafficked to the lysosome is incompletely understood. The current studies show that sortilin selectively co-immunoprecipitates with the cleaved prodomain and/or precursor form of TGF-β family members. Furthermore, sortilin co-localizes with, and enhances accumulation of a nodal family member in the Golgi. Co-expression of sortilin with TGF-β family members leads to decreased accumulation of precursor proteins and cleavage products and this is attenuated by lysosomal, but not proteosomal inhibitors. In Xenopus embryos, overexpression of sortilin leads to a decrease in phospho-Smad2 levels and phenocopies loss of nodal signaling. Conversely, down-regulation of sortilin expression in HeLa cells leads to an up-regulation of endogenous bone morphogenic protein pathway activation, as indicated by an increase in phospho-Smad1/5/8 levels. Our results suggest that sortilin negatively regulates TGF-β signaling by diverting trafficking of precursor proteins to the lysosome during transit through the biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号