首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
R. S. Coyne  M. C. Yao 《Genetics》1996,144(4):1479-1487
Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ciliated protozoa. The cis-acting signal directing breakage has been most rigorously defined in Tetrahymena thermophila, where it consists of a 15-bp DNA sequence known as Cbs, for chromosome breakage sequence. We have identified sequences identical or nearly identical to the T. thermophila Cbs at sites of breakage flanking the germline micronuclear rDNA locus of six additional species of Tetrahymena as well as members of two related genera. Other general features of the breakage site are also conserved, but surprisingly, the orientation and number of copies of Cbs are not always conserved, suggesting the occurrence of germline rearrangement events over evolutionary time. At one end of the T. thermophila micronuclear rDNA locus, a pair of short inverted repeats adjacent to Cbs directs the formation of a giant palindromic molecule. We have examined the corresponding sequences from two other Tetrahymena species. We find the sequence to be partially conserved, as previously implied from analysis of macronuclear rDNA, but of variable length and organization.  相似文献   

2.
Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindromic genes coding for rRNA (rDNA) which are generated from a single chromosomal copy during development. In this study we isolated the chromosomal copy of rDNA and determined the structure and developmental fate of the sequence surrounding its 5' junction. The result indicates that specific chromosomal breakage occurs at or near the 5' junction of rDNA during development. The breakage event is associated with DNA elimination and telomeric sequence addition. Similar results were also found previously for the 3' junction of this gene. These results could explain how the extrachromosomal rDNA is first generated. Near both junctions of the chromosomal rDNA, a pair of 20-nucleotide repeats was found. These sequences might serve as signals for site-specific breakage. In addition, we found a pair of perfect inverted repeats at the 5' junction of this gene. The repeats are 42 nucleotides long and are separated by 28 nucleotides. The existence of this structure provides a simple explanation for the formation of the palindromic rDNA.  相似文献   

3.
Synopsis.
The DNA of the macro- and the micronucleus of Tetrahymena thermophila has been compared by various biochemical methods. It became evident from their thermal denaturation temperatures and buoyant densities that the 2 DNAs were very similar in overall composition. Small differences were detected when the sequence complexities of these DNAs were compared by DNA renaturation studies. The studies suggested that ˜ 10% of the micronuclear genome was lost or underrepresented in the macronucleus. Comparison of individual gene levels revealed further differences. By using the technic of gene cloning a micronuclear sequence was isolated which hybridized only with micronuclear, but not with macronuclear DNA. These results indicated the occurrence of elimination or underreplication of this sequence in the macronucleus. Gene amplification was also shown to occur. In the micronucleus only a single copy of rDNA was found integrated into the chromosome. During macro-nuclear development, amplification was observed to occur, and the amount of rDNA to increase, until there were ˜ 200 copies per haploid genome in the mature macronucleus. all of them extrachromosomal and palindromic. The 3rd case of alteration involved a simple repeated sequence, (CCCCAA)n, present in the termini of rDNA and also in many other locations of the genome. Restriction endonuclease digestion studies revealed drastic differences in the organization of the repeats between macro-and micronucleus. These differences may be interpreted as the results of chromosome fragmentation which occurs at every cluster of the repeats during macronuclear development. The relationship between this event and gene amplification and elimination is discussed.  相似文献   

4.
Tetrahymena micronuclear DNA fragments have been cloned in the plasmid pBR322. One clone, pTt 2512, has been found to contain the C-C-C-C-A-A hexanucleotide repeat which is also present in the macronuclear rDNA. Further restriction enzyme digestion and hybridization studies suggest that the clone also contains sequences that are not present in the somatic macronucleus. The flanking sequences of the C4A2 repeats in this clone were separated into four restriction fragments, one from one side and three from the other. These fragments were used as probes for Southern hybridization to study the organizations of similar sequences in the macronucleus and micronucleus. All four fragments hybridized to many fragments of restriction enzyme digested micronuclear DNA. However, none of these hybridizations were detected in the macronucleus. Thus, these families of repetitive DNA are completely eliminated from the macronucleus. Further analysis suggested that the four different sequences may be linked at other locations of the genome. Using nullisomic strains of Tetrahymena, it is found that at least one of these sequences is present in more than one chromosome. Studies of various normal and star strains of Tetrahymena suggest that these sequences are stable in the normal micronucleus but are altered drastically in the defective micronuclei of the star strains. Eliminated DNA of similar nature has also been found in at least five other randomly selected clones of micronuclear DNA and may be present widely in the genome.  相似文献   

5.
The ribosomal RNA genes of the Tetrahymena macronucleus exist as extrachromosomal, linear molecules. The termini of these molecules have been shown to contain the tandemly repeated hexanucleotide (C-C-C-C-A- A)n. In this study the same or related sequences were found in other locations of the genome. Using the depurination method, we showed that macronuclear DNA contained this sequence even after rDNA had been removed. The sequence was found mainly in the repetitive fraction of the DNA. The presence of this sequence in both the macronucleus and the micronucleus was also shown by Southern hybridization using C-C-C-C-A-A repeat as a probe. Comparison between the hybridization patterns of macronuclei and micronuclei reveals interesting differences. Whereas the two nuclei share the same genetic origin, the majority of the restriction enzyme digestion sites flanking the C-C-C-C-A-A repeat appear to be different. Such a difference was found to be specific for this sequence, because it was not detected when other sequences were used for hybridization. These results suggest that some kind of alteration has occurred in the genome during the formation of the macronucleus, and that the C-C-C-C-A-A repeat may be related to this process.  相似文献   

6.
Cloning yeast telomeres on linear plasmid vectors   总被引:53,自引:0,他引:53  
J W Szostak  E H Blackburn 《Cell》1982,29(1):245-255
We have constructed a linear yeast plasmid by joining fragments from the termini of Tetrahymena ribosomal DNA to a yeast vector. Structural features of the terminus region of the Tetrahymena rDNA plasmid maintained in the yeast linear plasmid include a set of specifically placed single-strand interruptions within the cluster of hexanucleotide (C4A2) repeat units. An artificially constructed hairpin terminus was unable to stabilize a linear plasmid in yeast. The fact that yeast can recognize and use DNA ends from the distantly related organism Tetrahymena suggests that the structural features required for telomere replication and resolution have been highly conserved in evolution. The linear plasmid was used as a vector to clone chromosomal telomeres from yeast. One Tetrahymena end was removed by restriction digestion, and yeast fragments that could function as an end on a linear plasmid were selected. Restriction mapping and hybridization analysis demonstrated that these fragments were yeast telomeres, and suggested that all yeast chromosomes might have a common telomere sequence. Yeast telomeres appear to be similar in structure to the rDNA of Tetrahymena, in which specific nicks or gaps are present within a simple repeated sequence near the terminus of the DNA.  相似文献   

7.
8.
Sequence characterization of Tetrahymena macronuclear DNA ends.   总被引:6,自引:3,他引:3       下载免费PDF全文
Tetrahymena is a ciliated protozoan which has two nuclei: a micronucleus, which maintains the genetic continuity of the cell, and the macronucleus which is derived from the micronucleus after sexual conjugation. A macronuclear DNA library was constructed to contain DNA ends. A probe containing C4A2 repeats which are known to be present at macronuclear DNA ends (1) was used to screen the library. Three clones were characterized by sequencing, restriction enzyme mapping and Bal 31 digestion. The data indicate that these three clones represent macronuclear DNA ends which were generated by DNA fragmentation during macronuclear formation. The sequencing data at the C4A2 repeat junction show a conserved sequence of five nucleotides, TTATT. Sequences further away show no obvious homologies except that they are highly enriched in AT. This structure is quite different from the subtelomeric sequences of other organisms.  相似文献   

9.
M C Yao  J G Gall 《Cell》1977,12(1):121-132
The macronucleus of the protozoan, Tetrahymena, is known to contain multiple rRNA genes which are not linked to the chromosomes. Here we present evidence that the germinal micronucleus of this organism contains a single gene for rRNA integrated into the chromosomal DNA. Unlike the extrachromosomal copies of the macronucleus, which are composed of a pair of reversely repeated sequences (a palindrome), the integrated copy of rDNA is nonrepetitive or half the size of the extrachromosomal rDNA. Furthermore, we have failed to detect such an integrated copy of rDNA in the macronucleus. The implications of these observations for the amplification and evolution of rDNA are discussed.  相似文献   

10.
B O King  M C Yao 《Cell》1982,31(1):177-182
The linear extrachromosomal ribosomal DNA of Tetrahymena is generated from a single integrated copy during macronuclear development. The free ends of this extrachromosomal gene contain 20-70 tandem repeats of the hexanucleotide CCCCAA. We have determined the nucleotide sequence at the same (3') end of the single, integrated micronuclear gene. In contrast to the extrachromosomal gene, only a single CCCCAA sequence was found at this position. The same result was obtained from two independently isolated DNA clones, and was therefore not likely an artifact of cloning. Comparisons of the genomic DNA with the cloned fragment by Southern hybridization also supported this argument. Thus the tandemly repetitive hexanucleotide at the free ends of the extrachromosomal rDNA is not an inherited feature, and must be generated during the development of the macronucleus.  相似文献   

11.
We have investigated the occurrence of methylated adenine residues in the macronuclear ribosomal RNA genes of Tetrahymena thermophila. It has been shown previously that macronuclear DNA, including the palindromic ribosomal RNA genes (rDNA), of Tetrahymena thermophila contains the modified base N-6-methyladenine, but no 5-methylcytosine. Purified rDNA was digested with restriction enzymes Sau 3AI, MboI and DpnI to map the positions and levels of N-6-methyladenine in the sequence 5' GATC 3'. A specific pattern of doubly methylated GATC sequences was found; hemimethylated sites were not detected. The patterns and levels of methylation of these sites did not change significantly in different physiological states. A molecular form of the rDNA found in the newly developing macronucleus and for several generations following the sexual process, conjugation, contained no detectably methylated GATC sites. However, both the bulk macronuclear DNA and palindromic rDNA from the same macronuclei were methylated. Possible roles for N-6-methyladenine in macronuclear DNA are discussed in light of these findings.  相似文献   

12.
Brian B. Spear 《Chromosoma》1980,77(2):193-202
The DNA in the macronucleus of the protozoan Oxytricha, unlike like that of typical eukaryotes, exists as short, gene-sized molecules. Within the macronucleus the rRNA genes are contained in molecules 7,380 nucleotide pairs in length. This rDNA has been substanially purified by selective denaturation of non-ribosomal DNA followed by Sl nuclease digestion. Results from restriction nuclease digestion and rRNA:DNA hybridization show that the rDNA is a linear, non-palindromic molecule which contains one gene each for the 19s and 25s rRNAs. A total of less than 600 base pairs of DNA lies between the 19s and 25s genes or at the 3 end of the 25s gene. The non-coding portion of the ribosomal DNA is almost entirely limited to an approximately 1,400 base pair region at the 5 end of the molecule.  相似文献   

13.
Approximately 0.8% of the adenine residues in the macronuclear DNA of the ciliated protozoan Tetrahymena thermophila are modified to N 6-methyladenine. DNA methylation is site specific and the pattern of methylation is constant between clonal cell lines. In vivo, modification of adenine residues appears to occur exclusively in the sequence 5'-NAT-3', but no consensus sequence for modified sites has been found. In this study, DNA fragments containing a site that is uniformly methylated on the 50 copies of the macronuclear chromosome were cloned into the extrachromosomal rDNA. In the novel location on the rDNA minichromosome, the site was unmethylated. The result was the same whether the sequences were introduced in a methylated or unmethylated state and regardless of the orientation of the sequence with respect to the origin of DNA replication. The data show that sequence is insufficient to account for site-specific methylation in Tetrahymena and argue that other factors determine the pattern of DNA methylation.  相似文献   

14.
15.
G. M. Kapler  E. Orias    E. H. Blackburn 《Genetics》1994,137(2):455-466
The abundant rDNA minichromosome of Tetrahymena thermophila is generated by a series of developmentally controlled processing steps, termed rDNA maturation, during the formation of the new macronucleus in conjugating cells. rDNA maturation involves excision of a region encoding the single copy rRNA gene (rDNA) from its germline location, rearrangement of the rDNA into a palindromic minichromosome, de novo telomere addition, and amplification to approximately 10(4) copies. The rDNA is maintained at this high level in vegetatively growing cells. Using a previously developed genetic scheme for studying rDNA maturation and maintenance, we report the isolation of a new class of mutants defective for rDNA maturation. Several new rDNA maintenance mutants were also obtained. The maturation mutant, rmm10, is severely defective for the production of both monomeric and palindromic rDNA in the developing macronucleus. The rmm10 mutation is recessive-lethal and cis-acting. None of the previously identified DNA sequence elements that control rDNA maturation or maintenance is mutated in rmm10. Therefore, additional cis-acting sequence elements must be required for rDNA maturation. Based on our current understanding of rDNA maturation processes, we suggest that the rmm10 mutation affects rDNA excision rather than subsequent rDNA amplification/replication.  相似文献   

16.
The chromosomes of the macronuclear (expressed) genome of Tetrahymena thermophila are generated by developmental fragmentation of the five micronuclear (germline) chromosomes. This fragmentation is site specific, directed by a conserved chromosome breakage sequence (Cbs element). An accompanying article in this issue reports the development of a successful scheme for the genome-wide cloning and identification of functional chromosome breakage sites. This article reports the physical and genetic characterization of 30 functional chromosome breakage junctions. Unique sequence tags and physical sizes were obtained for the pair of macronuclear chromosomes generated by fragmentation at each Cbs. Cbs-associated polymorphisms were used to genetically map 11 junctions to micronuclear linkage groups and macronuclear coassortment groups. Two pairs of junctions showed statistically significant similarity of the sequences flanking the Cbs, suggestive of relatively recent duplications of entire Cbs junctions during Tetrahymena genome evolution. Two macronuclear chromosomes that lose at least one end in an age-related manner were also identified. The whole-genome shotgun sequencing of the Tetrahymena macronucleus has recently been completed at The Institute for Genome Research (TIGR). By providing unique sequence from natural ends of macronuclear chromosomes, Cbs junctions will provide useful sequence tags for relating macro- and micronuclear genetic, physical, and whole-genome sequence maps.  相似文献   

17.
To investigate the developmentally programmed telomere addition that accompanies chromosome fragmentation during macronuclear differentiation in Tetrahymena thermophila, five representative telomeric regions from the macronucleus were cloned and characterized in detail. The sequences adjacent to the telomeric (C4A2:T2G4) repeats on these five macronuclear ends had no significant sequence homology or shared secondary structure. Two developmentally independent examples of one macronuclear telomere had a 5 base pair difference in the position of the junction between the telomeric repeats and the adjacent sequences. A telomere-adjacent sequence, in the form of a synthetic oligonucleotide, was unable to prime the addition of telomeric repeats in vitro. The implications of these results for the mechanisms underlying developmentally programmed chromosome fragmentation and telomere addition in Tetrahymena are discussed.  相似文献   

18.
The ciliate Tetrahymena thermophila contains a chromosomally integrated copy of the rRNA genes (rDNA) in its germinal (micronuclear) genome. These genes are excised from the chromosome through a process involving site-specific DNA breakage, become linear palindromic molecules with added telomeres, and are greatly amplified during development of the somatic nucleus (macronucleus). In this study, we cloned a 15-kilobase segment of the germ line DNA containing these genes and injected it into developing macronuclei of T. thermophila. Up to 11% of injected cells were transformed to the paromomycin-resistant phenotype specified by the injected DNA. Transformation efficiency was dependent on the developmental stages of the injected cells and the integrity of the injected DNA but not the DNA concentration or conformation. The injected DNA was apparently processed and amplified correctly to produce rDNA molecules with the expected linear palindromic structure which carried the appropriate physical markers. Thus, the 15-kilobase DNA contained all cis-acting sequences sufficient for the DNA-processing events leading to rDNA amplification in T. thermophila.  相似文献   

19.
A novel form of extrachromosomal rDNA has been identified in conjugating Tetrahymena cells. This rDNA consists of 11 kb linear double-stranded DNA molecules, each containing a single rRNA gene copy. The DNA sequence, tandemly repeated CCCCAA (Blackburn and Gall 1978) found at the termini of extrachromosomal palindromic rDNA (the macronuclear form found in vegetatively growing cells), is also present at the corresponding terminus of the 11 kb rDNA. The other end of this molecule has an extra 0.3 kb segment of DNA covalently attached to the DNA region corresponding to the center of the palindromic rDNA. The kinetics of appearance and synthesis of the 11 kb rDNA early in macronuclear development are consistent with its being an intermediate in rDNA amplification.  相似文献   

20.
Human ribosomal RNA genes (rDNA) are arranged as tandem repeat clusters on the short arms of five pairs of acrocentric chromosomes. We have demonstrated that a majority of the rDNA clusters are detected as 3-Mb DNA fragments when released from human genomic DNA by EcoRV digestion. This indicated the absence of the EcoRV restriction site within the rDNA clusters. We then screened for rDNA-positive cosmid clones using a chromosome 22-specific cosmid library that was constructed from MboI partial digests of the flow-sorted chromosomes. Three hundred twenty rDNA-positive clones negative for the previously reported distal flanking sequence (pACR1) were chosen and subjected to EcoRV digestion. Seven clones susceptible to EcoRV were further characterized as candidate clones that might have been derived from the junctions of the 3-Mb rDNA cluster. We identified one clone containing part of the rDNA unit sequence and a novel flanking sequence. Detailed analysis of this unique clone revealed that the coding region of the last rRNA gene located at the proximal end of the cluster is interrupted with a novel sequence of 147 bp that is tandemly repeated and is connected with an intervening 68-bp unique sequence. This junction sequence was readily amplified from chromosomes 21 and 15 as well as 22 using the polymerase chain reaction. Fluorescence in situ hybridization further indicated that the 147-bp sequence repeat is commonly distributed among all the acrocentric short arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号