首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

3.
In addition to their role in the virulence attenuation of Salmonella and other pathogens, dam or seqA genes increase the sensitivity towards hydrogen peroxide. The aim of our study is to investigate the effect of H2O2 on the motility, the catalase and superoxide dismutase activities of dam and/or seqA mutants of Salmonella typhimurium. Our findings showed significant differences of the effects of H2O2 on the motility between wild type strain and all of mutants. Hydrogen peroxide changes SOD isoenzyme profile of these mutants by disappearance of Fe-SOD. Concerning the catalase, an increase of its activity was observed in the wild type, dam and seqA mutant. However, H2O2 decreases the activity of this enzyme in the double mutant strain. We can suggest that the dam gene, together with seqA, play a protective role in the oxidative stress response of Salmonella typhimurium.  相似文献   

4.
Mutants exhibiting high catalase activity were derived from Candida boidinii S2 strain AOU-1, from among mutants resistant to H2O2, NaN3 or 3-amino-1,2,4-triazole (ATA). The catalase activity of an ATA-resistant strain was improved by means of a methanol-limited chemostat culture with H2O2 supplementation. The catalase activity increased with increasing H2O2 concentration in the feed medium in the range where methanol did not remain. Alcohol oxidase activity increased after adaptation of the cells to H2O2. Cells of mutant strain SA051 grown under the optimal culture conditions produced 1200 mm formaldehyde in the reaction mixture.  相似文献   

5.
Mycobacterium tuberculosis catalase‐peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro‐drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid‐NADH adduct that ultimately confers anti‐tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG‐derived INH‐resistance, we have compared the catalytic properties (including the ability to form the INH‐NADH adduct) of the wild‐type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met‐Tyr‐Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance‐conferring mutants were then assayed for their ability to generate the INH‐NADH adduct in the presence of peroxide (t‐BuOOH and H2O2), superoxide, and no exogenous oxidant (air‐only background control). The results demonstrate that residue location plays a critical role in determining INH‐resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant‐specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH‐resistance that is not correlated with the formation of the INH‐NADH adduct.  相似文献   

6.
To reveal the pecularities of the growth under the conditions of catabolite repression (medium 2) of Bacillus subtilis and the mutants obtained, the investigations of dynamics of the following processes were carried out: alteration of the pH of the culture exhaustion of glucose in the medium, appearance of the activity of both aconitase in the cells and extracellular metal- and serine proteases in the supernatant, and the appearance of the thermoresistant spores. The following features were observed during the growth under the conditions of catabolite repression: 1. Bacillus subtilis WB 746 and cgs mutants: the death of the main part of the culture after the Iogarithmic phase of growth (LPG), the presence of the secondary LPG of the survived cells which have the increasing activity of aconitase, the appearance and sharp increase in the extracellular serine protease activity 6 hours before thermoresistant spore formation. In the case of cgs mutants the activity of metal proteases appears and increases during the secondary LPG; 2. In the culture of cgl mutants the pH is lowered to 5.1 at the end of the LPG and after the glucose exhaustion the death of almost all the culture follows; 3. cgr mutants: a comparatively high activity of aconitase in the cells is found by the time of the early LPG, and at the end of the LPG the activity of both metal- and serine proteases appear in the supernatant of the culture and the secondary induction of the serine protease activity 6 hours before thermoresistant spore formation is observed. The serine protease activity found in the supernatant before and after the secondary induction of the enzyme belongs to the identical protein. During the stationary phase of the growth of cgr mutants, the high rate of 3H-uridine incorporation into the RNA molecules which have the electrophoretic mobility of mRNA was observed. The sporulation of Bac. subtilis strains under investigation, except cgl mutants, occurs when the culture has reached the definite state: the alkaline pH, the presence of the aconitase activity in the cells and the induced activity of serine protease.  相似文献   

7.
Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B-like protein-interacting protein kinase 31 (CIPK31) mutants were more susceptible to ShB, while CIPK31 overexpressors (OX) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31: Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF-hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA-induced H2O2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31-mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H2O2 while CIPK31 OX accumulated more H2O2 compared to the wild-type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H2O2.  相似文献   

8.
TRR14 is an unknown protein that was first identified as a component of Arabidopsis responses to trehalose treatment. Phylogenic analysis showed that TRR14 belongs to a seven-gene family in Arabidopsis. Close homologues of TRR14 were found in plants and many cyanobacteria. GFP expression analysis showed that TRR14 is located in the chloroplast. GUS::TRR14 expression was found in leaves, flowers, stems and siliques. We investigated the functional roles of TRR14 in Arabidopsis thaliana under salt and drought stress. By a reverse genetic approach, two trr14 T-DNA insertion mutants were isolated from the SALK collection. Functional analysis of the trr14 mutants revealed enhanced sensitivity of the mutants to salt and drought stress, compared with the wild type plants. Further experiments indicated that the trr14 mutants have reduced seed germination, root length, survival rate and chlorophyll content under stress conditions. In addition activity of oxidative enzymes like peroxidase, catalase and polyphenol oxidase was reduced under salt and drought treatments. Thus, the present data indicate that a novel protein, TRR14, is involved in plant salt and drought tolerance.  相似文献   

9.
Three genes encode catalase in Arabidopsis. Although the role of CAT2 in photorespiration is well established, the importance of the different catalases in other processes is less clear. Analysis of cat1, cat2, cat3, cat1 cat2, and cat2 cat3 T‐DNA mutants revealed that cat2 had the largest effect on activity in both roots and leaves. Root growth was inhibited in all cat2‐containing lines, but this inhibition was prevented by growing plants at high CO2, suggesting that it is mainly an indirect effect of stress at the leaf level. Analysis of double mutants suggested some overlap between CAT2 and CAT3 functions in leaves and CAT1 and CAT2 in seeds. When plants had been grown to a similar developmental stage in short days or long days, equal‐time exposure to oxidative stress caused by genetic or pharmacological inhibition of catalase produced a much stronger induction of H2O2 marker genes in short day plants. Together, our data (a) underline the importance of CAT2 in basal H2O2 processing in Arabidopsis; (b) suggest that CAT1 and CAT3 are mainly “backup” or stress‐specific enzymes; and (c) establish that day length‐dependent responses to catalase deficiency are independent of the duration of oxidative stress.  相似文献   

10.
In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2O2 in the 10 μm range. This concentration range seems to be necessary to activate H2O2‐dependent signalling pathways stimulating the expression of H2O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock‐down mutants had lost the transient accumulation of H2O2, suggesting that a decrease in catalase activity was the key element for establishing a transient H2O2 burst. Catalase was inactivated by a one‐electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2O2, inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast‐directed protection enzymes.  相似文献   

11.
Abstract

Nitric oxide is known to be a messenger in animals and plants. Catalase may regulate the concentration of intracellular ?NO. In this study, yeast Saccharomyces cerevisiae cells were treated with 1–20 mM S-nitrosoglutathione (GSNO), a nitric oxide donor, which decreased yeast survival in a concentration-dependent manner. In the wild-type strain (YPH250), 20 mM GSNO reduced survival by 32%. The strain defective in peroxisomal catalase behaved like the wild-type strain, while a mutant defective in cytosolic catalase showed 10% lower survival. Surprisingly, survival of the double catalase mutant was significantly higher than that of the other strains used. Incubation of yeast with GSNO increased the activities of both superoxide dismutase (SOD) and catalase. Pre-incubation with cycloheximide prevented the activation of catalase, but not SOD. The concentrations of oxidized glutathione increased in the wild-type strain, as well as in the mutants defective in peroxisomal catalase and an acatalasaemic strain; it failed to do this in the mutant defective in cytosolic catalase. The activity of aconitase was reduced after GSNO treatment in all strains studied, except for the mutant defective in peroxisomal catalase. The content of protein carbonyls and activities of glutathione reductase and S-nitrosoglutathione reductase were unchanged following GSNO treatment. The increase in catalase activity due to incubation with GSNO was not found in a strain defective in Yap1p, a master regulator of yeast adaptive response to oxidative stress. The obtained data demonstrate that exposure of yeast cells to the ?NO-donor S-nitrosoglutathione induced mild oxidative/nitrosative stress and Yap1p may co-ordinate the up-regulation of antioxidant enzymes under these conditions.  相似文献   

12.
Catalases are the most important enzymatic systems used to degrade hydrogen peroxide (H2O2) into water and oxygen, thereby lowering intracellular hydrogen peroxide levels. Entomopathogenic fungi display increased catalase activity during germination and growth, which is necessary to counteract the hyperoxidant state produced by oxidative metabolism. We studied the influence of five different hydrocarbons on catalase production by Lecanicillium muscarium to determine the importance of catalase induction in fungal germination, stress tolerance and virulence. Conidia produced by colonies grown on different hydrocarbons showed higher rates of catalase activity compared to the control and the catalase activity of conidia produced on n-octacosane was three times higher than the activity of the control. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. Our study has helped to identify that increased catalase activity improves the germination and tolerance to different antioxidant stress response of L. muscarium.  相似文献   

13.
Summary Treatment of germinating tomato seeds ofnormal (La +/La +),lanceolate (La +/La) and several other leaf-shape mutants with phenylboric acid (PBA) duplicates the action of theLa gene with respect to the following: 1) Causes an increase in the level of activity of the four oxidative enzymes tyrosinase, laccase, peroxidase and catalase; 2) causes a corresponding change in leaf form; 3) shows a concentration effect similar to the dosage effect exhibited by theLa gene with respect to both the increase in the activity of oxidative enzymes and a change in leaf form; 4) causes changes, when applied to plants carrying any of several leaf-shape mutants, similar to those caused by theLa gene when the latter is in combination with these leaf shape mutant genes. Based on previous evidence and the current evidence, it is suggested that the primary action of PBA as well as of theLa gene, is to cause the increase in the level of activity of the four oxidative enzymes and the latter in turn, among other factors, determine the shape and size of the leaf in the tomato.  相似文献   

14.
Summary Mutants of Saccharomyces cerevisiae, described as catalase and cytochromes deficient (Pachecka et al., 1974), have been analyzed for heme biosynthesis ability. Some enzymatic activities involved in protoheme synthesis were measured in acellular extracts, whereas whole cells were analyzed for cytochrome spectra and for possible accumulation of porphyrin synthesis intermediates. A good correlation was found between these in vitro and in vivo studies. Results show that two mutants were impaired in 5-aminolevulinate synthesis, two mutants were devoid of uroporphyrinogen I synthetase activity and one mutant presented defects in coproporphyrinogen III oxidase activity.  相似文献   

15.
The rice CHLH gene encodes the Mg2+-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stress-responsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPX1, OsRAC1, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.  相似文献   

16.
We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (-262;-844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT -262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT, respectively, p < 0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF-308 SNP was associated with catalase activity (p = 0.04 and p = 0.8). CAT -262 T carriers were less frequent in highly exposed miners (OR = 0.39 [0.20–0.78], p = 0.007). In CAT -262 T carriers only, catalase activity decreased with high dust exposure (p = 0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT -262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity.  相似文献   

17.
18.
19.
Abstract

Objectives

Some studies have indicated the pathophysiological importance of reactive oxygen species (ROS) in patients with nephrotic syndrome. Myeloperoxidase (MPO) is a leukocyte-derived enzyme-generating ROS that has been proposed to exert a wide array of pro-atherogenic effects throughout all stages of the atherosclerotic process. The aim of this study was to investigate the serum malondialdehyde (MDA) levels, MPO and catalase activities in patients with adult nephrotic syndrome.

Patients and Methods

Twenty-four patients with nephrotic syndrome and 24 healthy controls were enrolled. Serum MPO activity, catalase activity, and MDA levels were assessed.

Results

Serum MPO activity and MDA levels were signi?cantly higher in patients with nephrotic syndrome than controls (both, P < 0.001), while catalase activity was signi?cantly lower (P < 0.001). Serum catalase activity was found to be significantly correlated with MPO activity (r = ?0.417, P = 0.003) and MDA levels (r = ?0.532, P = 0.007). The serum MDA levels were also found to be significantly correlated with MPO activity (r = 0.419, P = 0.003).

Conclusions

We concluded that serum MPO activity and oxidative stress were increased and that serum catalase activity was decreased in patients with adult nephrotic syndrome. In addition, these results indicate that increased MPO activity is associated with an oxidant–antioxidant imbalance that may contribute to atherosclerosis in patients with adult nephrotic syndrome.  相似文献   

20.
Manipulation of the CO2 concentration of the atmosphere allows the selection of photorespiratory mutants from populations of seeds treated with powerful mutagens such as sodium azide. So far, barley lines deficient in activity of phosphoglycolate phosphatase, catalase, the glycine to serine conversion, glutamine synthetase, glutamate synthase, 2-oxoglutarate uptake and serine: glyoxylate aminotransferase have been isolated. In addition one line of pea lacking glutamate synthase activity and one barley line containing reduced levels of Rubisco are available. The characteristics of these mutations are described and compared with similar mutants isolated from populations of Arabidopsis. As yet, no mutant lacking glutamine synthetase activity has been isolated from Arabidopsis and possible reasons for this difference between barley and Arabidopsis are discussed. The value of these mutant plants in the elucidation of the mechanism of photorespiration and its relationships with CO2 fixation and amino acid metabolism are highlighted.Abbreviations GS cytoplasmic glutamine synthetase - GS2 chloroplastic glutamine synthetase - PFR Photon fluence rate - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SGAT serine:glyoxylate aminotransferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号