首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王晖  肖昭扬  高琴琴  刘明富 《生物磁学》2014,(12):2356-2359
钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70余种钾离子通道亚型,其中双孔钾离子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统的单孔钾离子通道差异很大。双孔钾离子通道,具有4个跨膜片段,形成独特的2个孔道结构域,主要介导背景钾电流。由于其介导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1几乎表达于机体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

2.
:钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70 余种钾离子通道亚型,其中双孔钾离 子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统 的单孔钾离子通道差异很大。双孔钾离子通道,具有4 个跨膜片段,形成独特的2 个孔道结构域,主要介导背景钾电流。由于其介 导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1 几乎表达于机 体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生 理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

3.
Modulation and genetic identification of the M channel   总被引:14,自引:0,他引:14  
Potassium channels constitute a superfamily of the most diversified ion channels, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, transmitter release, cell proliferation and cell degeneration. The M-type channel is a unique ligand-regulated and voltage-gated K(+) channel showing distinct physiological and pharmacological characteristics. This review will cover some important progress in the study of M channel modulation, particularly focusing on membrane transduction mechanisms. The K(+) channel genes corresponding to the M channel have been identified and will be reviewed in detail.It has been a long journey since the discovery of M current in 1980 to our present understanding of the mysterious mechanisms for M channel modulation; a journey which exemplifies tremendous achievements in ion channel research and exciting discoveries of elaborate modulatory systems linked to these channels. While substantial evidence has accumulated, challenging questions remain to be answered.  相似文献   

4.
Block of a sarcoplasmic reticulum anion channel (SCl channel) by disulfonic stilbene derivatives [DIDS, dibenzamidostilbene-2,2'-disulfonic acid (DBDS), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)] was investigated in planar bilayers using SO4(2-) as the conducting ion. All molecules caused reversible voltage-dependent channel block when applied to either side of the membrane. DIDS also produced nonreversible channel block from both sides within 1-3 min. Reversible inhibition was associated with a decrease in channel open probability and mean open duration but not with any change in channel conductance. The half inhibitory concentration for cis- and trans-inhibition had voltage dependencies with minima of 190 nM and 33 microM for DBDS and 3.4 and 55 microM for DNDS. Our data supports a permeant blocker mechanism, in which stilbenes block SCl channels by lodging in the permeation pathway, where they may dissociate to either side of the membrane and thus permeate the channel. The stilbenes acted as open channel blockers where the binding of a single molecule occludes the channel. DBDS and DNDS, from opposite sides of the membrane, competed for common sites on the channel. Dissociation rates exhibited biphasic voltage dependence, indicative of two dissociation processes associated with ion movement in opposite directions within the trans-membrane electric field. The kinetics of DNDS and DBDS inhibition predict that there are two stilbene sites in the channel that are separated by 14-24 A and that the pore constriction is approximately 10 A in diameter.  相似文献   

5.
L Guidoni  V Torre  P Carloni 《Biochemistry》1999,38(27):8599-8604
Molecular dynamics simulations of the K+ channel from Streptomyces lividans (KcsA channel) were performed in a membrane-mimetic environment with Na+ and K+ in different initial locations. The structure of the channel remained stable and well preserved for simulations lasting up to 1.5 ns. Salt bridges between Asp80 and Arg89 of neighboring subunits, not detected in the X-ray structure, enhanced the stability of the tetrameric structure. Na+ or K+ ions located in the channel vestibule lost part of their hydration shell and diffused into the channel inner pore in less than a few hundred picoseconds. This powerful catalytic action was caused by strong electrostatic interactions with Asp80 and Glu71. The hydration state of the metal ions turned out to depend significantly on the conformational flexibility of the channel. Furthermore, Na+ entered the channel inner pore bound to more water molecules than K+. The different hydration state of the two ions may be a determinant factor in the ion selectivity of the channel.  相似文献   

6.
Gating currents from voltage-sensitive channels are generally attributed to the translocation or redistribution of ionic charge associated with the channel molecule. Such charge moves in the direction of the applied field to produce a decreasing current in the external circuit. An early rising phase for the gating current is observed for a number of channel systems and might be either some special kinetic redistribution of charge or an experimental artifact. A model that produces net charge in the channel through sequential molecular dissociation of a charged channel segment gives a rising phase for the gating current. Translocation of the charged segment produces the decay phase for a biphasic gating current. This kinetic molecular explanation constitutes a physical explanation for the biphasic gating currents that is consistent with present views of channel structure.  相似文献   

7.
We have characterized the effect of external copper on the gating properties of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle, incorporated into artificial bilayers. The effect of Cu2+ was evaluated as changes in the gating kinetic properties of the channel after the addition of this ion. We found that, from concentrations of 20 microM and up, copper induced a concentration- and time-dependent decrease in channel open probability. The inhibition of channel activity by Cu2+ could not be reversed by washing or by addition of the copper chelator, bathocuproinedisulfonic acid. However, channel activity was appreciably restored by the sulfhydryl reducing agent dithiothreitol. The effect of copper was specific since other transition metal divalent cations such as Ni2+, Zn2+ or Cd2+ did not affect BK(Ca) channel activity in the same concentration range. These results suggest that external Cu2+-induced inhibition of channel activity was due to direct or indirect oxidation of key amino-acid sulfhydryl groups that might have a role in channel gating.  相似文献   

8.
Proteins are translocated across membranes through a channel that is formed by the prokaryotic SecY or eukaryotic Sec61 complex. The crystal structure of the SecY channel from M. jannaschii revealed a plug domain that appears to seal the channel in its closed state. However, the role of the plug remains unclear, particularly because plug deletion mutants in S. cerevisiae are functional. Here, we demonstrate that plug deletion mutants in E. coli SecY are also functional and even efficiently translocate proteins with defective or missing signal sequences. The crystal structures of equivalent plug deletions in SecY of M. jannaschii show that, although the overall structures are maintained, new plugs are formed. These lack many interactions that normally stabilize the closed channel, explaining why the channels can open for proteins with signal-sequence mutations. Our data show that the plug domain is required to maintain a closed state of the channel and suggest a mechanism for channel gating.  相似文献   

9.
The molecular properties and orientation of the cGMP-gated cation channel of bovine rod outer segment membranes were studied using biochemical and immunochemical methods. Western blots labeled with anti-channel monoclonal antibodies indicate that the channel has a subunit Mr of 63,000 in bovine rod outer segment membranes prepared in the presence and absence of protease inhibitors and in rod outer segments from other mammalian retinas. The channel has an apparent Mr of 78,000 in both COS-1 cells and Xenopus oocytes expressing the cloned cDNA. NH2-terminal sequence analysis indicates that the lower Mr of the channel in rod outer segments is caused by the absence of the first 92 amino acids predicted by cDNA sequence analysis. Immunofluorescent and immunogold labeling has confirmed that the 63,000 form of the channel is present in rod outer segments. These results indicate that photoreceptor cell-specific co-translational or post-translational cleavage of the NH2-terminal segment of the channel occurs prior or during the incorporation of the channel into the rod outer segment plasma membrane. Immunogold labeling studies using site-directed antibodies also indicate that the NH2-terminal segment of the rod outer segment channel is exposed on the cytoplasmic side of the plasma membrane.  相似文献   

10.
KcsA is a homotetrameric 68-kDa membrane-associated potassium channel which selectively gates the flux of potassium ions across the membrane. The channel is known to undergo a pH-dependent open-to-closed transition. Here we describe an NMR study of the monomeric subunit of the channel (KcsAM), solubilized in SDS micelles. Chemical shift, solvent exchange, backbone 15N relaxation and residual dipolar coupling (RDC) data show the TM1 helix to remain intact, but the TM2 helix contains a distinct kink, which is subject to concentration-independent but pH-dependent conformational exchange on a microsecond time scale. The kink region, centered at G99, was previously implicated in the gating of the tetrameric KcsA channel. An RDC-based model of KcsAM at acidic pH orients TM1 and the two helical segments of the kinked TM2 in a configuration reminiscent of the open conformation of the channel. Thus, the transition between states appears to be an inherent capability of the monomer, with the tetrameric assembly exerting a modulatory effect upon the transition which gives the channel its physiological gating profile.  相似文献   

11.
MscS is a bacterial mechanosensitive channel that shows voltage dependence. The crystal structure of MscS revealed that the channel is a homoheptamer with a large chamber on the intracellular site. Our previous experiments indicated that the cytoplasmic chamber of the channel is not a rigid structure and changes its conformation upon the channel activation. In this study, we have applied various sized cosolvents that are excluded from protein surfaces. It is well known that such cosolvents induce compaction of proteins and prevent thermal fluctuations. It is also known that they shift channel equilibrium to the state of lower volume. We have found that large cosolvents that cannot enter the channel interior accelerate channel inactivation when applied from the cytoplasmic side, but they slow down inactivation when applied from the extracellular side. We have also found that small cosolvents that can enter the channel cytoplasmic chamber prevent the channel from opening, unlike the large ones. These data support our idea that the channel cytoplasmic chamber shrinks upon inactivation but also give new clues about conformational changes of the channel upon transitions between its functional states.  相似文献   

12.
In addition to the voltage-dependent anion channel (VDAC), mitochondrial outer membranes contain a cationic channel of large conductance, which is blocked by a mitochondrial addressing peptide (peptide-sensitive channel, PSC). Bovine adrenal cortex mitochondria were solubilized in 1.5% octyl -glucoside, and membrane vesicles were reconstituted by slow dilution with a low ionic strength buffer. The reconstituted vesicles contained a functional channel possessing the electrical characteristics of the cationic channel, including its sensitivity to the mitochondrial addressing peptide. Important features of the described protocol are the nature of the detergent, its concentration, and the addition of glycerol during the whole procedure. No solubilization could be observed in the presence of cholate.  相似文献   

13.
Okada A  Miura T  Takeuchi H 《Biochemistry》2001,40(20):6053-6060
The M2 protein of influenza A virus forms a homotetramer ion channel in the lipid membrane. The channel is specific for proton conductance and is activated by low pH with a transition midpoint at pH 5.7. We have studied the structure of the transmembrane domain of the M2 ion channel by using UV resonance Raman spectroscopy, with special attention to the side chains of histidine (His37) and tryptophan (Trp41) residues. The Raman spectra provide direct evidence that the imidazole ring of His37 is protonated upon channel activation at low pH. Concomitantly, the UV resonance Raman scattering from Trp41 shows an unusual intensity change, which is ascribed to a cation-pi interaction between the protonated (cationic) imidazole ring of His37 and the indole ring of Trp41. The protonation of His37 and the Raman intensity change of Trp41 do not occur in the presence of amantadine that blocks the M2 ion channel. These observations clearly show that the protonation of His37 and concomitant cation-pi interaction with Trp41 is a key step in the activation of the M2 ion channel. The His37-Trp41 interaction associated with the channel activation is explained by assuming a conformational transition of His37 induced by electrostatic repulsion among the protonated imidazole rings of four His37 residues in the tetramer channel. Trp41 may play a role in stabilizing the channel open state through cation-pi interaction with His37. A molecular model for the activation of M2 ion channel is proposed on the basis of the gating mechanism.  相似文献   

14.
Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally hydrophobic transmembrane segments of nascent membrane proteins into lipid. Many aspects of membrane-protein integration remain controversial and poorly understood, but new structural data provide testable hypotheses. We propose a model of how the channel recognizes transmembrane segments, orients them properly with respect to the plane of the membrane and releases them into lipid. We also discuss how the channel would prevent small molecules from crossing the lipid bilayer while it is integrating proteins.  相似文献   

15.
Recordings of the electric conductivity of a single ionic channel usually exhibit two levels of conductance: a zero and a finite level. The channel may, however, be in a few states which have the same conductivity level, and the distribution of dwell time durations at this conductivity level is thus not monoexponential. It is shown that the joint probability p(tc,to) of the occurrence of a time interval tc during which the channel is not conducting, immediately followed by a time interval to during which the channel is conducting may or may not be equal to the joint probability pr(tc,to) of the occurrence of a non-conducting interval tc preceded by a conducting interval to. If the interconversions between the various states in which the channel can exist obey detailed balance, i.e., if the channel behaves like a system at thermodynamic equilibrium, then p(tc,to) = pr(tc,to). This should help to reveal whether irreversible processes, like metabolic reactions or flows of substances across the membrane, are coupled to the gating process of the ionic channels.  相似文献   

16.
This study was conducted to determine some effects of commercial and recreational traffic on the resuspension of sediment in Navigation Pool No. 9 of the Upper Mississippi River. Fifty commercial vessel passages were examined at five different main channel locations and at side channels that were adjacent to each of the main channel locations. Sixteen recreational vessel passages were examined at one main channel location and its adjacent side channel and at a channel located in the backwaters. The backwater channel was not directly influenced by navigation in the main channel. Changes in total non-filterable residue (TNFR) and average particle size of suspended silts were used to assess some effects of navigation. Seventy-eight percent of the commercial vessel passages resulted in significant increases of TNFR and/or average particle size in the water column. In the main channel, TNFR increased from 3.4% to 15% above ambient levels; in the side channels, increases ranged from 2.5% to 21.7%. The average diameter of the resuspended silts increased by 0.21 to 2.34 m. In the main channel, 50% of the recreational vessel passages caused increased TNFR and all passages increased average particle size. In the backwater channel, all of the recreational passages caused increases in TNFR and average particle size. Total resuspended sediment transported downstream ranged from an estimated 0.82 to 1015.7 mTons/passage in the main channel for commercial vessels, 0.39 to 0.64 mTons/passage in the main channel for recreational vessels, 0.22 to 28.12 mTons/passage in side channels due to commercial vessels in the main channel, and 0.54 to 2.08 mTons/ passage in the backwater channel for recreational vessels. Bed-sediment composition, location of the vessels in the channel, channel geometry, the number of successive passages, and vessel speed were identified as factors that affected the magnitude of the resuspension.  相似文献   

17.
A voltage-dependent, K+-selective ionic channel from sarcoplasmic reticulum of rabbit skeletal muscle has been studied in a planar phospholipid bilayer membrane. The purpose [corrected] of this work is to study the mechanism by which the channel undergoes transitions between its conducting and nonconducting states. Thermodynamic studies show that the "open" and "closed" states of the channel exist in a voltage-dependent equilibrium, and that the channel displays only a single open state; the channel conductance is 120 pmho in 0.1 M K+. The channel's gating process follows single exponential kinetics at all voltages tested, and the individual opening and closing rate constants are exponentially dependent on voltage. The individual rate constants may also be determined from a stochastic analysis of channel fluctuations among multiple conductance levels. Neither the thermodynamic nor the kinetic parameters of gating depend on the absolute concentration of channels in the bilayer. The results are taken as evidence that the channel gates by an unusually simple two-state conformational mechanism in which the equivalent of 1.1 net charges are moved across the membrane during the formation of the open channel.  相似文献   

18.
The primary structure of a novel subunit of the mouse NMDA (N-methyl-D-aspartate) receptor channel, designated epsilon 4, has been revealed by cloning and sequencing the cDNA. The epsilon 4 subunit shares high amino acid sequence identity with the epsilon 1, epsilon 2 and epsilon 3 subunits of the mouse NMDA receptor channel, thus constituting the epsilon subfamily of the glutamate receptor channel. Expression from cloned cDNAs of the epsilon 4 subunit together with the zeta 1 subunit in Xenopus oocytes yields functional NMDA receptor channels. The epsilon 4/zeta 1 heteromeric channel exhibits high apparent affinities for agonists and low sensitivities to competitive antagonists. The epsilon 4 subunit is thus distinct in functional properties from the epsilon 1, epsilon 2 and epsilon 3 subunits, and contributes further diversity of the NMDA receptor channel.  相似文献   

19.
Molecular models of the M2 segments of the GluR1 channel have been elaborated using a molecular mechanics approach. The models are based on the homology between pore-lining segments of AMPA receptor channels and the KcsA K+ channel and on cyclic H bonds at the Q/R site of the AMPA receptor channel. The N-terminal region of an M2 segment of the channel is assumed, like that of the K+ channel, to adopt a helical conformation. Due to a deletion, the C-terminal end of the M2 segment of the AMPA receptor is more stretched than that of the K+ channel. As a result, only a single oxygen ring may be exposed to the AMPA receptor channel pore. Data on the block of AMPA receptor channels by dicationic adamantane derivatives have been used to select the most relevant model. The model with the oxygen of a Gly residue (position +2 from the Q/R site) exposed to the pore best fits the experimental data. This model also fits experimental data for another class of AMPA receptor antagonists, the polyamine amides. According to the model, the side-chains of the C-terminal residues are involved in intra-receptor interactions that stabilize the structure of the channel rather than in interactions with ions in the pore.  相似文献   

20.
In this model-building study a model for the pore of the acetylcholine receptor channel is proposed. The pore is formed by five -helices of the M2 segment where three rings of hydrophilic side chains point into the channel lumen. This model is in agreement with most experimental data like photolabeling, drug affinity studies, single channel conductivity measurements and cryo electron microscopy known about this channel.This study predicts a strong coupling of the motion of the ions in the channel to that of the charged and highly hydrophilic amino acid side chains at the channel wall. Due to the negative net-charge in the pore more than a single cation may occupy the pore region. The resulting strong local electric fields make the commonly used constant field approximation obsolete for this type of ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号