首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeography and conservation genetics of Eld's deer (Cervus eldi)   总被引:6,自引:0,他引:6  
Eld's deer (Cervus eldi) is a highly endangered cervid, distributed historically throughout much of South Asia and Indochina. We analysed variation in the mitochondrial DNA (mtDNA) control region for representatives of all three Eld's deer subspecies to gain a better understanding of the genetic population structure and evolutionary history of this species. A phylogeny of mtDNA haplotypes indicates that the critically endangered and ecologically divergent C. eldi eldi is related more closely to C. e. thamin than to C. e. siamensis, a result that is consistent with biogeographic considerations. The results also suggest a strong degree of phylogeographic structure both between subspecies and among populations within subspecies, suggesting that dispersal of individuals between populations has been very limited historically. Haplotype diversity was relatively high for two of the three subspecies (thamin and siamensis), indicating that recent population declines have not yet substantially eroded genetic diversity. In contrast, we found no haplotype variation within C. eldi eldi or the Hainan Island population of C. eldi siamensis, two populations which are known to have suffered severe population bottlenecks. We also compared levels of haplotype and nucleotide diversity in an unmanaged captive population, a managed captive population and a relatively healthy wild population. Diversity indices were higher in the latter two, suggesting the efficacy of well-designed breeding programmes for maintaining genetic diversity in captivity. Based on significant genetic differentiation among Eld's deer subspecies, we recommend the continued management of this species in three distinct evolutionarily significant units (ESUs). Where possible, it may be advisable to translocate individuals between isolated populations within a subspecies to maintain levels of genetic variation in remaining Eld's deer populations.  相似文献   

2.
海南坡鹿的起源、进化及保护   总被引:1,自引:0,他引:1  
坡鹿是世界濒危物种,三个亚种分布在东南亚大陆,仅海南坡鹿种群分布在中国海南岛.2003年,国际社会的专家和学者提出了将海南坡鹿引入泰国亚种原分布区,重建已经绝灭野生种群的建议.在此种情况下,明确海南坡鹿的起源、与其它亚种间的系统发生关系、以及遗传多样性水平对有效保护坡鹿具有重要意义.本研究以线粒体DNA D-loop区490 bp基因片段为分子标记,比较分析了海南坡鹿、泰国亚种和缅甸亚种共35个样本的序列差异.我们所测的样本中,总共发现4种单倍型.所有21个海南坡鹿样品共享1种单倍型.利用最大似然法(ML)、最大简约法(MP)、邻接法(NJ)和贝叶斯法(Bayesian)构建的系统进化树表明海南坡鹿种群与泰国亚种的关系较近.但是,二者也发生一定程度的遗传分化.海南坡鹿与泰国亚种的遗传距离均值为0.026.我们推测海南坡鹿可能是在更新世冰期(69万年前)通过陆桥由东南亚大陆迁入中国海南岛.我们的结论说明海南坡鹿的遗传多样性很低,并且已独立进化很长时间.因此,我们不支持将海南坡鹿引入泰国亚种的原分布区,重建已经绝灭的野生种群的设想和建议.我们建议将海南坡鹿与泰国亚种分别作为两个独立的进化显著单元(ESUs)进行管理.  相似文献   

3.
The Vietnamese sika deer (Cervus nippon pseudaxis) is an endangered subspecies of economic and traditional value in Vietnam. Most living individuals are held in traditional farms in central Vietnam, others being found in zoos around the world. Here we study the neutral genetic diversity and population structure of this subspecies using nine microsatellite loci in order to evaluate the consequences of the limited number of individuals from which this population was initiated and of the breeding practices (i.e., possible inbreeding). Two hundred individuals were sampled from several villages. Our data show both evidence for limited local inbreeding and isolation by distance with a mean F(ST) value of 0.02 between villages. This suggests that exchange of animals occurs at a local scale, at a rate such that highly inbred mating is avoided. However, the genetic diversity, with an expected heterozygosity (H(e)) of 0.60 and mean number of alleles (k) of 5.7, was not significantly larger than that estimated from zoo populations of much smaller census size (17 animals sampled; H(e) = 0.65, k = 4.11). Our results also suggest that the Vietnamese population might have experienced a slight bottleneck. However, this population is sufficiently variable to constitute a source of individuals for reintroduction in the wild in Vietnam.  相似文献   

4.
Crocodylus siamensis, the Siamese crocodile, is a critically endangered species of freshwater crocodile previously distributed throughout much of SE Asia. Recovery plans call for reintroductions to the wild using founder individuals currently in captivity, mostly in commercial crocodile farms. On many farms C. siamensis has been intentionally hybridised with either Cuban crocodiles, C. rhombifer, or the estuarine crocodile, C. porosus, and hybrids may be difficult to distinguish morphologically. We report on the combined use of microsatellite and mtDNA genetic markers to determine the species status of potential founder individuals for reintroduction of C. siamensis. Genetic markers were used to characterise 103 captive and wild-caught individuals of C. siamensis, C. rhombifer and C. porosus in Vietnam and to distinguish purebred versus hybrid individuals. Although the microsatellite loci used had some overlap of allele sizes among species, assignment tests allowed differentiation. Four hybrids were identified, two of which had not been recognised morphologically as hybrids, and one of these was thought to be a C. siamensis suitable for reintroduction. Ten of the identified purebred C. siamensis were subsequently released into Cat Tien National Park in southern Vietnam.  相似文献   

5.
The Hainan peacock pheasant is an endangered taxon found only on Hainan Island of China. Due to lack of detailed taxonomic studies, whether it is a subspecies of the grey peacock pheasant (Polyplectron bicalcaratum katsumatae) or a full species (Polyplectron katsumatae) remained unclear. We used molecular markers, including the complete mitochondrial cytochrome b gene and intron G of the nuclear ovomucoid gene, to reevaluate the taxonomy of the Hainan peacock pheasant. The results showed phylogeographic monophyly and large genetic distance between the Hainan peacock pheasant and the grey peacock pheasant. Sequence differences corroborated the species-level distinction between these two peacock pheasants, which were inferred to have diverged about 1.4+/-0.3 million years ago, near the time Hainan Island became separated from mainland China. Because the population density of the Hainan peacock pheasant is very low in its tropical forest on the island and the wild population is declining, it is now becoming severely endangered and should be ranked as the rarest species in the Order Galliformes in China. Our results increase the urgency of getting more morphological data to support the classification of the Hainan peacock pheasant as a distinct species and taking more conservation action immediately to protect this endangered island species.  相似文献   

6.
Sperm capacitation was examined in the endangered Eld's deer (Cervus eldi thamin). Sperm motility and viability (percentage of sperm cells with intact membranes) were assessed in vitro over time after attempting to induce capacitation in TALP alone and TALP supplemented with calcium (10 mM CaCl2), dibutyryl cAMP (1 mM dbcAMP), or fetal calf serum (20% FCS). Sperm aliquots were evaluated at 0, 3, 6, 9, and 12 h for motility, viability, and ability to acrosome react after exposure to calcium ionophore (A23187, CI; 10 microM) or lysophosphatidylcholine (LC; 100 microg/mL). Fresh sperm aliquots in TALP + 10 mM CaCl2 exposed to CI had fewer (P < 0.05) intact acrosomes than the TALP control (TALP alone) or dbcAMP and FCS treatments after 9 h. Mean (+/- SEM) percentage of intact acrosomes of spermatozoa incubated in medium with increased CaCl2 declined (P < 0.05) from 80.2 +/- 2.6% (0 h) to 49.7 +/- 7.3% after prolonged incubation (9 h). The proportion of capacitated fresh spermatozoa was not influenced by LC treatment. Capacitation was not induced (P > 0.05) by any of the presumptive sperm capacitators after freeze-thawing. Likewise, neither CI nor LC induced the acrosome reaction (AR) in these spermatozoa, suggesting that the freeze-thawing process may have caused membrane damage. Results revealed that the supplementation of medium with CaCl2 evokes capacitation in some spermatozoa. However, Eld's deer spermatozoa appear remarkably resistant to conventional stimulators of capacitation and the AR.  相似文献   

7.
Regional variations in tool use among chimpanzee subspecies and between populations within the same subspecies can often be explained by ecological constraints, although cultural variation also occurs. In this study we provide data on tool use by a small, recently isolated population of the endangered Nigeria–Cameroon chimpanzee Pan troglodytes ellioti, thus demonstrating regional variation in tool use in this rarely studied subspecies. We found that the Ngel Nyaki chimpanzee community has its own unique tool kit consisting of five different tool types. We describe a tool type that has rarely been observed (ant-digging stick) and a tool type that has never been recorded for this chimpanzee subspecies or in West Central Africa (food pound/grate stone). Our results suggest that there is fine- scale variation in tool use among geographically close communities of P. t. ellioti, and that these variations likely reflect both ecological constraints and cultural variation.  相似文献   

8.
The body size of a univoltine carabid beetle Carabus tosanus on Shikoku Island, Japan, was clearly smaller in higher‐altitude populations (subspecies), which possibly represents incipient speciation. To explore the determinants of altitudinal differences in body size in this species, we studied the degree of phenotypic plasticity by conducting rearing experiments at two constant temperatures and examined genetic differences through interpopulation crosses. At 15 °C, C. tosanus had a longer developmental period and a shorter adult body than at 20 °C. Nevertheless, variation in body size due to temperature effects (phenotypic plasticity) was small compared to the interpopulation differences, which suggests substantial genetic differences between populations (subspecies) at different altitudes. In F1 offspring from crosses between a low‐altitude (subspecies tosanus) and a high‐altitude population (subspecies ishizuchianus), adult body length was affected by the genotypes of both parents, with an interaction effect of parental genotype and offspring sex. Further analyses revealed that adult body length was affected by sex‐linked factors in addition to autosomal factors. These genetic differences in body size may have resulted from adaptations to different altitudes and may be important for the process of incipient speciation because body size differences could contribute to premating reproductive isolation.  相似文献   

9.
The accurate diagnosis of conservation units now typically includes recognition of genetic diversity and unique evolutionary lineages and is necessary to inform the conservation management of endangered species. We evaluated whether the two currently recognized subspecies of the endangered Central American squirrel monkey (Saimiri oerstedii) in Costa Rica are evolutionarily significant units (ESUs) that should be managed separately in conservation efforts. We used previously published sequences of 50 individuals of Saimiri oerstedii for 880 bp of the mtDNA d-loop and genotypes of 244 individuals for 16 microsatellites and conducted novel analyses to characterize genetic differentiation between subspecies of Saimiri oerstedii. We measured sequence differentiation and inferred an intraspecific molecular phylogeny and a haplotype network, and found consistent results supporting statistically significant divergence and reciprocal monophyly between subspecies. A population aggregation analysis also supported Saimiri oerstedii citrinellus and S. o. oerstedii as diagnosably distinct units. These results confirm previous genetic studies with smaller sample sizes and are consistent with other factors including differences in pelage and morphology and divergence at nuclear markers. Conservation managers should manage these subspecies separately to prevent the loss of genetic diversity via artificially induced outbreeding. High levels of genetic diversity may buffer populations against outside extinction pressures, to which Saimiri oerstedii are vulnerable because of their dwindling habitat and small population size.  相似文献   

10.
Locomotor behaviour varies between two subspecies of the Spanish wall lizard Podarcis hispanica. One subspecies inhabits the Columbretes islands, the other lives on the Spanish mainland. Size standardized voluntary speeds (as measured in unrestrained laboratory conditions) are lower in the island population (P. h. atrata) than in the mainland population (P. h. hispanica). Maximal running performance (when chased) is much higher in the mainland population than in the island population. High speed video recordings show that subspecies differ in gait characteristics: individuals from the mainland modulate running velocity primarily by modifying stride length, individuals from the island primarily by altering stride frequency. P. h. hispanica's strategy for modulating speed probably allows this mainland subspecies to attain higher maximal speeds than the island subspecies P. h. atrata. Theoretical considerations suggest that at high speeds, P. h. hispanica's running style is energetically more favourable, but this hypothesis awaits experimental verification. We suggest that the differences in locomotion efficiency between the subspecies result from differences in predation pressure between the mainland and the island. The mainland study site has a higher predator diversity and offers less hiding opportunities to the lizards.  相似文献   

11.
Little is known about the classification and phylogenetic relationships of the leaf monkeys (Presbytis). We analyzed mitochondrial DNA sequences of cytochrome b (Cyt b) and 12S rRNA to determine the phylogenetic relationships of the genus Presbytis. Gene fragments of 388 and 371 bp of Cyt b and 12S rRNA, respectively, were sequenced from samples of Presbytis melalophos (subspecies femoralis, siamensis, robinsoni, and chrysomelas), P. rubicunda and P. hosei. The genus Trachypithecus (Cercopithecidae) was used as an outgroup. The Cyt b NJ and MP phylogeny trees showed P. m. chrysomelas to be the most primitive, followed by P. hosei, whereas 12S rRNA tree topology only indicated that these two species have close relationships with the other members of the genus. In our analysis, chrysomelas, previously classified as a subspecies of P. melalophos, was not included in either the P. m. femoralis clade or the P. m. siamensis clade. Whether or not there should be a separation at the species level remains to be clarified. The tree topologies also showed that P. m. siamensis is paraphyletic with P. m. robinsoni, and P. m. femoralis with P. rubicunda, in two different clades. Cyt b and 12S rRNA are good gene candidates for the study of phylogenetic relationships at the species level. However, the systematic relationships of some subspecies in this genus remain unclear.  相似文献   

12.
Recent improvements in genetic analyses have paved the way in using molecular data to answer questions regarding evolutionary history, genetic structure, and demography. Key deer are a federally endangered subspecies assumed to be genetically unique, homogeneous, and have a female-biased population of approximately 900 deer. We used 985 bp of the mitochondrial cytochrome b gene and 12 microsatellite loci to test two hypotheses: (1) that Key deer are isolated and have reduced diversity compared to mainland deer and (2) that isolation of the Florida Keys has led to a small population size and a high risk of extinction. Our results indicate that Key deer are indeed genetically isolated from mainland white-tailed deer and that there is a lack of genetic substructure between islands. While Key deer exhibit reduced levels of genetic diversity compared to their mainland counterparts, they contain enough diversity to uniquely identify individual deer. Based on genetic identification, we estimated a census size of around 1000 individuals with a heavily skewed female-biased adult sex ratio. Furthermore, our genetic and contemporary demographic data were used to generate a species persistence model of the Key deer. Sensitivity tests within the population viability analysis brought to light the importance of fetal sex ratio and female survival as the primary factors at risk of driving the subspecies to extinction. This study serves as a prime example of how persistence models can be used to evaluate population viability in natural populations of endangered organisms.  相似文献   

13.
The endemic Samango monkey subspecies (Cercopithecus albogularis labiatus) inhabits small discontinuous Afromontane forest patches in the Eastern Cape, KwaZulu-Natal midlands and southern Mpumalanga Provinces in South Africa. The subspecies is affected by restricted migration between forest patches which may impact on gene flow resulting in inbreeding and possible localized extinction. Current consensus, based on habitat quality, is that C. a. labiatus can be considered as endangered as the small forest patches they inhabit may not be large enough to sustain them. The aim of this study was to conduct a molecular genetic investigation to determine if the observed isolation has affected the genetic variability of the subspecies. A total of 65 Samango monkeys (including juveniles, subadults and adults) were sampled from two localities within the Hogsback area in the Amathole Mountains. Nuclear and mitochondrial DNA variation was assessed using 17 microsatellite markers and by sequencing the hypervariable 1 region (HVR1). Microsatellite data generated was used to determine population structure, genetic diversity and the extent of inbreeding. Sequences of the HVR1 were used to infer individual origins, haplotype sharing and haplotype diversity. No negative genetic factors associated with isolation such as inbreeding were detected in the two groups and gene flow between groups can be regarded as fairly high primarily as a result of male migration. This was in contrast to the low nuclear genetic diversity observed (H o = 0.45). A further reduction in heterozygosity may lead to inbreeding and reduced offspring fitness. Translocations and establishment of habitat corridors between forest patches are some of the recommendations that have emerged from this study which will increase long-term population viability of the subspecies.  相似文献   

14.
Genetic analyses of bird subspecies designated as conservation units can address whether they represent units with independent evolutionary histories and provide insights into the evolutionary processes that determine the degree to which they are genetically distinct. Here we use mitochondrial DNA control region sequence and six microsatellite DNA loci to examine phylogeographical structure and genetic differentiation among five North American grasshopper sparrow (Ammodramus savannarum) populations representing three subspecies, including a population of the endangered Florida subspecies (A. s. floridanus). This federally listed taxon is of particular interest because it differs phenotypically from other subspecies in plumage and behaviour and has also undergone a drastic decline in population size over the past century. Despite this designation, we observed no phylogeographical structure among populations in either marker: mtDNA haplotypes and microsatellite genotypes from floridanus samples did not form clades that were phylogenetically distinct from variants found in other subspecies. However, there was low but significant differentiation between Florida and all other populations combined in both mtDNA (FST = 0.069) and in one measure of microsatellite differentiation (theta = 0.016), while the non-Florida populations were not different from each other. Based on analyses of mtDNA variation using a coalescent-based model, the effective sizes of these populations are large (approximately 80,000 females) and they have only recently diverged from each other (< 26,000 ybp). These populations are probably far from genetic equilibrium and therefore the lack of phylogenetic distinctiveness of the floridanus subspecies and minimal genetic differentiation is due most probably to retained ancestral polymorphism. Finally, levels of variation in Florida were similar to other populations supporting the idea that the drastic reduction in population size which has occurred within the last 100 years has not yet had an impact on levels of variation in floridanus. We argue that despite the lack of phylogenetic distinctiveness of floridanus genotypes the observed genetic differentiation and previously documented phenotypic differences justify continued designation of this subspecies as a protected population segment.  相似文献   

15.
Black rhinoceros (Diceros bicornis) are one of the most endangered mammal species in Africa, with a population decline of more than 96% by the end of the last century. Habitat destruction and encroachment has resulted in fragmentation of the remaining populations. To assist in conservation management, baseline information is provided here on relative genetic diversity and population differentiation among the four remaining recognized subspecies. Using microsatellite data from nine loci and 121 black rhinoceros individuals, and comparing the results with those of other African species affected in similar ways, Diceros bicornis michaeli retained the most genetic diversity (heterozygosity 0.675) compared with Diceros bicornis minor (0.459) and Diceros bicornis bicornis (0.505), suggesting that the duration of the known bottlenecks in these populations has only had a limited impact on diversity. Comparable and moderate degrees of population differentiation were found between D. b. minor, D. b. bicornis and D. b. michaeli. Results from the single sample available of the most endangered subspecies, Diceros bicornis longipes, showed the least diversity of all individuals examined. This information should assist conservation management decisions, especially those affecting population viability assessments and selection of individuals for translocations, and will also facilitate subspecies identification for ex situ individuals of uncertain origin.  相似文献   

16.
Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.  相似文献   

17.
Random amplified polymorphic DNA (RAPD) markers were used as input for an analysis of molecular variance (AMOVA), homogeneity of molecular variance analysis (HOMOVA), and cluster analysis to describe the population genetic structure of Iliamna corei, a federally endangered plant located only in Virginia, and I. remota , a rare plant in Virginia, Indiana, and Illinois. The analysis was performed to help clarify the taxonomic relationship between the two closely related species. We analysed four clones in the only known population of I. corei , breeding stock derived from seeds originating from the population site, and three I. remota populations in Virginia. Eighty-five percent of screened primers revealed DNA polymorphisms in Iliamna. Ninety-nine informative markers were generated using seven primers. No significant statistical differences (at P = 0.05) in RAPD variation was found between species (24% of variance) using the AMOVA procedure. However, within species/among populations (31 % of the variance) and within populations (45% of the variance) there were significant differences (P < 0.002). An unweighted paired group method using arithmetic averages (UPGMA) cluster analysis showed the federally endangered I. corei population to be genetically distinct from the apparently recently introduced (in Virginia: ∼ 100 ybp) I. remota. The lack of significant differences from the AMOVA and the high number shared bands between I. corei and I. remota suggest that I. corei may be more appropriately classified as a subspecies of I. remota. Iliamna corei plants in the natural population were genetically similar to one another while the I. corei breeding stock plants and I. remota plants were genetically relatively diverse.  相似文献   

18.
Numbers of light-footed clapper rails Rallus longirostris levipes, an endangered bird inhabiting southern California salt marshes, have substantially declined from historic levels. RAPD (randomly amplified polymorphic DNA) analysis was employed to assess the genetic variability within and among four of the largest remaining light-footed clapper rail populations. A single, larger population of the endangered Yuma clapper rail Rallus longirostris yumanensis was used for comparison. A total of 325 RAPD primers were tested on DNA from a subset of five clapper rails composed of a single representative for each of the four light-footed clapper rail populations and a representative for the single Yuma clapper rail population. Of the 1338 amplified bands (loci) surveyed in these five representative birds, approximately 1% were polymorphic, indicating the level of differentiation across all loci is quite low. Nine primers yielding these 16 polymorphic bands were used to analyse 48 individuals from five populations. Five of these bands were polymorphic in both subspecies, six were polymorphic only within the light-footed clapper rails, and five were polymorphic only within the Yuma clapper rail samples. Considering the few bands that were polymorphic among the light-footed clapper rail populations, a surprisingly high level of population differentiation (GST= 0.28) was found. This is in accord with the results of AMOVA analyses which show that a fairly high percentage of the limited variability among the rails is due to either differences between subspecies or differences between the light-footed rail populations. Because inbreeding depression is suspected and overall genetic distances between populations are low, movement of light-footed clapper rails from larger populations into smaller ones might be considered as a management strategy. Employing RAPDs as one of a series of assays is useful in revealing the population structure of genetically depauperate species.  相似文献   

19.
Edge and central populations can show great differences regarding their genetic variation and thereby also in their probability of extinction. This fact might be of great importance for the conservation strategies of endangered species. In this study we examine the level of microsatellite variability within three threatened edge populations of the green lizard subspecies Lacerta viridis viridis (Laur.) in Brandenburg (Germany) and compare the observed variation to other edge and central populations within the northern species range. We demonstrate that the northernmost edge populations contain less genetic variation in comparison to the central population. However, there were no observable significant differences to the other edge population included in this study. Surprisingly, we observed a high genetic differentiation in a small geographical range between the three endangered populations in Brandenburg, which can be explained by processes like fragmentation, isolation, genetic drift and small individual numbers within these populations. We also detected unique genetic variants (alleles), which only occurred in these populations, despite a low overall genetic variation. This study demonstrates the potential of fast evolving markers assessing the genetic status of endangered populations with a high resolution. It also illustrates the need for a comparative analysis of different regions within the species range, achieving a more exact interpretation of the genetic variation in endangered populations. This will aid future management decisions in the conservation of genetic diversity in threatened species.  相似文献   

20.
Abstract.  Hybridization with closely related taxa poses a significant threat to endangered subspecies (e.g. outbreeding depression, inbreeding) and confounds efforts to manage and conserve these taxa through a loss of taxonomic identity, in part because of the practical necessity of defining subspecies in a typological manner. We examined nine morphological characters in 167 post-juvenile museum specimens to determine if loggerhead shrikes Lanius ludovicianus Linnaeus 1766 on San Clemente Island (off the coast of California) remain diagnosable as L. l. mearnsi Ridgway (1903); an island endemic listed as endangered by the United States Fish and Wildlife Service. Four recent shrike specimens from the island were compared to historical specimens using a bivariate scatter plot and a discriminant function (the latter was used to classify recent specimens post hoc). The few recent specimens were not diagnosable as L. l. mearnsi , but instead appear to be intergrades between L. l. mearnsi and L. l. anthonyi Mearns 1898 (the subspecies endemic to Santa Cruz, Santa Catalina, Santa Rosa and Anacapa islands), and are perhaps closer to pure anthonyi . Our data and the species' natural history and distribution suggest that shrikes currently on San Clemente Island are the result of genetic 'swamping' of mearnsi by anthonyi . Under a necessarily typological definition of a subspecies, it is evident that mearnsi is probably no longer diagnosable. However, we conclude that protection of the entire Channel Islands population of the loggerhead shrike would be the best management strategy, as the species has declined drastically throughout the islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号