首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: The goal of the study is to obtain genetic information from exfoliated colonocytes in the fecal stream rather than directly from mucosa cells within the colon. The latter is obtained through invasive procedures. The difficulties encountered by this procedure are that certain probe information may be compromised due to partially degraded mRNA. Proper normalization is essential to obtaining useful information from these fecal array data. RESULTS: We propose a new two-stage semiparametric normalization method motivated by the features observed in fecal microarray data. A location-scale transformation and a robust inclusion step were used to roughly align arrays within the same treatment. A non-parametric estimated non-linear transformation was then used to remove the potential intensity-based biases. We compared the performance of the new method in analyzing a fecal microarray dataset with those achieved by two existing normalization approaches: global median transformation and quantile normalization. The new method favorably compared with the global median and quantile normalization methods. AVAILABILITY: The R codes implementing the two-stage method may be obtained from the corresponding author.  相似文献   

2.
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.  相似文献   

3.
Normalization removes or minimizes the biases of systematic variation that exists in experimental data sets. This study presents a systematic variation normalization (SVN) procedure for removing systematic variation in two channel microarray gene expression data. Based on an analysis of how systematic variation contributes to variability in microarray data sets, our normalization procedure includes background subtraction determined from the distribution of pixel intensity values from each data acquisition channel and log conversion, linear or non-linear regression, restoration or transformation, and multiarray normalization. In the case when a non-linear regression is required, an empirical polynomial approximation approach is used. Either the high terminated points or their averaged values in the distributions of the pixel intensity values observed in control channels may be used for rescaling multiarray datasets. These pre-processing steps remove systematic variation in the data attributable to variability in microarray slides, assay-batches, the array process, or experimenters. Biologically meaningful comparisons of gene expression patterns between control and test channels or among multiple arrays are therefore unbiased using normalized but not unnormalized datasets.  相似文献   

4.
Since the available microarray data of BOEC (human blood outgrowth endothelial cells), large vessel, and microvascular endothelial cells were from two different platforms, a working cross-platform normalization method was needed to make these data comparable. With six HUVEC (human umbilical vein endothelial cells) samples hybridized on two-channel cDNA arrays and six HUVEC samples on Affymetrix arrays, 64 possible combinations of a three-step normalization procedure were investigated to search for the best normalization method, which was selected, based on two criteria measuring the extent to which expression profiles of biological samples of the same cell type arrayed on two platforms were indistinguishable. Next, three discriminative gene lists between the large vessel and the microvascular endothelial cells were achieved by SAM (significant analysis of microarrays), PAM (prediction analysis for microarrays), and a combination of SAM and PAM lists. The final discriminative gene list was selected by SVM (support vector machine). Based on this discriminative gene list, SVM classification analysis with best tuning parameters and 10,000 times of validations showed that BOEC were far from large vessel cells, they either formed their own class, or fell into the microvascular class. Based on all the common genes between the two platforms, SVM analysis further confirmed this conclusion.  相似文献   

5.
A fundamental problem in DNA microarray analysis is the lack of a common standard to compare the expression levels of different samples. Several normalization protocols have been proposed to overcome variables inherent in this technology. As yet, there are no satisfactory methods to exchange gene expression data among different research groups or to compare gene expression values under different stimulus–response profiles. We have tested a normalization procedure based on comparing gene expression levels to the signals generated from hybridizing genomic DNA (genomic normalization). This procedure was applied to DNA microarrays of Mycobacterium tuberculosis using RNA extracted from cultures growing to the logarithmic and stationary phases. The applied normalization procedure generated reproducible measurements of expression level for 98% of the putative mycobacterial ORFs, among which 5.2% were significantly changed comparing the logarithmic to stationary growth phase. Additionally, analysis of expression levels of a subset of genes by real time PCR technology revealed an agreement in expression of 90% of the examined genes when genomic DNA normalization was applied instead of 29–68% agreement when RNA normalization was used to measure the expression levels in the same set of RNA samples. Further examination of microarray expression levels displayed clusters of genes differentially expressed between the logarithmic, early stationary and late stationary growth phases. We conclude that genomic DNA standards offer advantages over conventional RNA normalization procedures and can be adapted for the investigation of microbial genomes.  相似文献   

6.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

7.
8.

Background  

Analysis of DNA microarray data usually begins with a normalization step where intensities of different arrays are adjusted to the same scale so that the intensity levels from different arrays can be compared with one other. Both simple total array intensity-based as well as more complex "local intensity level" dependent normalization methods have been developed, some of which are widely used. Much less developed methods for microarray data analysis include those that bypass the normalization step and therefore yield results that are not confounded by potential normalization errors.  相似文献   

9.
癌的发生与发展过程涉及大量基因的异常表达。在目前基因表达谱分析中采用的标准化方法通常假设在疾病中差异表达的基因的比例很小并且差异上、下调的比例大致相等。这个被研究者所广泛采用的标准化的前提假设尚未被充分地论证过。通过分析胰腺癌的两套表达谱数据,我们发现在胰腺癌样本中基因表达的中值显著高于正常样本,提示传统的标准化假设并不适用于胰腺癌表达谱数据。采用标准化数据会导致错误地判断大量的差异下调的基因并失查许多差异上调的基因。采用原始数据分析发现在胰腺癌中的基因表达有广泛上调的特征,为深入研究胰腺癌的发生和发展机制提供了新线索。  相似文献   

10.
SUMMARY: We present a web server for Diagnosis and Normalization of MicroArray Data (DNMAD). DNMAD includes several common data transformations such as spatial and global robust local regression or multiple slide normalization, and allows for detecting several kinds of errors that result from the manipulation and the image analysis of the arrays. This tool offers a user-friendly interface, and is completely integrated within the Gene Expression Pattern Analysis Suite (GEPAS). AVAILABILITY: The tool is accessible on-line at http://dnmad.bioinfo.cnio.es.  相似文献   

11.
MOTIVATION: An important underlying assumption of any experiment is that the experimental subjects are similar across levels of the treatment variable, so that changes in the response variable can be attributed to exposure to the treatment under study. This assumption is often not valid in the analysis of a microarray experiment due to systematic biases in the measured expression levels related to experimental factors such as spot location (often referred to as a print-tip effect), arrays, dyes, and various interactions of these effects. Thus, normalization is a critical initial step in the analysis of a microarray experiment, where the objective is to balance the individual signal intensity levels across the experimental factors, while maintaining the effect due to the treatment under investigation. RESULTS: Various normalization strategies have been developed including log-median centering, analysis of variance modeling, and local regression smoothing methods for removing linear and/or intensity-dependent systematic effects in two-channel microarray experiments. We describe a method that incorporates many of these into a single strategy, referred to as two-channel fastlo, and is derived from a normalization procedure that was developed for single-channel arrays. The proposed normalization procedure is applied to a two-channel dose-response experiment.  相似文献   

12.
Normalization of cDNA microarray data   总被引:43,自引:0,他引:43  
Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array. Print-tip loess normalization provides a well-tested general purpose normalization method which has given good results on a wide range of arrays. The method may be refined by using quality weights for individual spots. The method is best combined with diagnostic plots of the data which display the spatial and intensity trends. When diagnostic plots show that biases still remain in the data after normalization, further normalization steps such as plate-order normalization or scale-normalization between the arrays may be undertaken. Composite normalization may be used when control spots are available which are known to be not differentially expressed. Variations on loess normalization include global loess normalization and two-dimensional normalization. Detailed commands are given to implement the normalization techniques using freely available software.  相似文献   

13.
D Wang  Y Zhang  Y Huang  P Li  M Wang  R Wu  L Cheng  W Zhang  Y Zhang  B Li  C Wang  Z Guo 《Gene》2012,506(1):36-42
Nowadays, some researchers normalized DNA methylation arrays data in order to remove the technical artifacts introduced by experimental differences in sample preparation, array processing and other factors. However, other researchers analyzed DNA methylation arrays without performing data normalization considering that current normalizations for methylation data may distort real differences between normal and cancer samples because cancer genomes may be extensively subject to hypomethylation and the total amount of CpG methylation might differ substantially among samples. In this study, using eight datasets by Infinium HumanMethylation27 assay, we systemically analyzed the global distribution of DNA methylation changes in cancer compared to normal control and its effect on data normalization for selecting differentially methylated (DM) genes. We showed more differentially methylated (DM) genes could be found in the Quantile/Lowess-normalized data than in the non-normalized data. We found the DM genes additionally selected in the Quantile/Lowess-normalized data showed significantly consistent methylation states in another independent dataset for the same cancer, indicating these extra DM genes were effective biological signals related to the disease. These results suggested normalization can increase the power of detecting DM genes in the context of diagnostic markers which were usually characterized by relatively large effect sizes. Besides, we evaluated the reproducibility of DM discoveries for a particular cancer type, and we found most of the DM genes additionally detected in one dataset showed the same methylation directions in the other dataset for the same cancer type, indicating that these DM genes were effective biological signals in the other dataset. Furthermore, we showed that some DM genes detected from different studies for a particular cancer type were significantly reproducible at the functional level.  相似文献   

14.
15.
16.
We present Bayesian hierarchical models for the analysis of Affymetrix GeneChip data. The approach we take differs from other available approaches in two fundamental aspects. Firstly, we aim to integrate all processing steps of the raw data in a common statistically coherent framework, allowing all components and thus associated errors to be considered simultaneously. Secondly, inference is based on the full posterior distribution of gene expression indices and derived quantities, such as fold changes or ranks, rather than on single point estimates. Measures of uncertainty on these quantities are thus available. The models presented represent the first building block for integrated Bayesian Analysis of Affymetrix GeneChip data: the models take into account additive as well as multiplicative error, gene expression levels are estimated using perfect match and a fraction of mismatch probes and are modeled on the log scale. Background correction is incorporated by modeling true signal and cross-hybridization explicitly, and a need for further normalization is considerably reduced by allowing for array-specific distributions of nonspecific hybridization. When replicate arrays are available for a condition, posterior distributions of condition-specific gene expression indices are estimated directly, by a simultaneous consideration of replicate probe sets, avoiding averaging over estimates obtained from individual replicate arrays. The performance of the Bayesian model is compared to that of standard available point estimate methods on subsets of the well known GeneLogic and Affymetrix spike-in data. The Bayesian model is found to perform well and the integrated procedure presented appears to hold considerable promise for further development.  相似文献   

17.
Normalization is critical for removing systematic variation from microarray data. For two-color microarray platforms, intensity-dependent lowess normalization is commonly used to correct relative gene expression values for biases. Here we outline a normalization method for use when the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique arrays are constructed that contain a subset of genes selected to test particular biological functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号