首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two angiotensin II receptor subtypes (A and B) are described from rat and human tissues. They have been characterised using specific peptidic and non-peptidic ligands with affinities differing by 1000 fold or more. These subtypes are present in adrenal glomerulosa of both species. Human uterus contains only subtype A, whereas both subtypes are found in rat uterus. Vascular smooth muscle cells in culture express only subtype B. Dithio-threitol totally inhibits binding to subtype B, but enhances the affinity to subtype A. There is a good correlation between the affinities of the selected agonists and antagonists for the two subtypes in the various tissues tested which is a usual requirement for receptor classification.  相似文献   

2.
Identification of angiotensin II receptor subtypes   总被引:40,自引:0,他引:40  
We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.  相似文献   

3.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

4.
Identification of two subtypes in the rat type I angiotensin II receptor.   总被引:10,自引:0,他引:10  
N Iwai  T Inagami 《FEBS letters》1992,298(2-3):257-260
A rat adrenal cDNA library was screened by colony hybridization using a rat cDNA fragment of type I angiotensin II receptor (AT1A) previously isolated from the kidney. Two cDNA clones were identified, designated as AT1B, to have a nucleotide sequence highly homologous to and yet distinct from AT1A. The amino acid sequence of AT1B consists of 359 amino acid residues and has 96% identity with AT1A. No conspicuous difference in the ligand binding characteristics was observed between AT1A and AT1B. The mRNA for AT1B was expressed in many tissues as is the case with AT1A, and most abundantly expressed in the adrenal glands in the Sprague-Dawley rats. The existence of two subtypes in the rat type I angiotensin II receptor might explain the diverse actions of angiotensin II in various tissues.  相似文献   

5.
Characterization of angiotensin II receptor subtypes in rat liver   总被引:4,自引:0,他引:4  
Radioligand binding studies identified two classes of 125I-angiotensin II-binding sites in rat liver membranes. High affinity binding sites (Kd = 0.35 +/- 0.13 nM, N = 372 +/- 69 fmol/mg of protein) were inactivated by dithiothreitol (0.1-10 mM) without any apparent change in low affinity binding sites (Kd = 3.1 +/- 0.8 nM, N = 658 +/- 112 fmol/mg of protein). Dithiothreitol inactivation was readily reversible but could be made permanent by alkylation of membrane proteins with iodoacetamide. Angiotensin II stimulation of glycogen phosphorylase in isolated rat hepatocytes (maximal stimulation 780%, EC50 = 0.4 nM) was completely inhibited by 10 mM dithiothreitol, a concentration which also abolished high affinity site binding; phosphorylase stimulation by glucagon and norepinephrine under these conditions was unaltered. Angiotensin II inhibition of glucagon-stimulated adenylate cyclase activity in hepatocytes required higher angiotensin II concentrations (EC50 = 3 nM) than phosphorylase stimulation and was not affected by dithiothreitol. Fractional occupancy of high affinity binding sites by 125I-angiotensin II correlated closely with angiotensin II-mediated phosphorylase stimulation, whereas occupancy of low affinity sites paralleled inhibition of adenylate cyclase activity. These data indicate that the physiologic effects of angiotensin II in rat liver are mediated by two distinct receptors, apparently not interconvertible, and provide the first evidence for angiotensin II receptor subtypes with differing biochemical features and mechanisms of action.  相似文献   

6.
Angiotensin II (Ang II), a major regulator of cardiovascular function and body fluid homeostasis, mediates its biological actions via two subtypes of G protein-coupled receptors, termed AT(1) and AT(2). The primary goal of this study was to raise monoclonal anti-peptide antibodies specific to angiotensin AT(1)- and AT(2)-receptor subtypes and to Ang II itself and using these monoclonal antibodies to determine the intraadrenal localization of AT(1) and AT(2) receptors and Ang II in male adult rats. Immunocytochemistry unambiguously demonstrates a regional colocalization of Ang II and angiotensin II receptors in the adrenal gland. The novel antibodies localized Ang II and the AT(1) receptors to the zona glomerulosa of the cortex and to the medulla whereas AT(2) receptors were limited to the medulla. The specificity of immunostaining was documented by pre-adsorption of the antibody with the immunogenic peptide. Our data underscore that AT(1) appears to mediate most of the physiological actions of Ang II in adrenal. Western blot analysis of rat adrenal protein extracts using AT(1) antibody showed a predominant 73-kDa band and a weaker 97-kDa immunoreactive band corresponding to glycosylated forms of the AT(1) receptor. Immunostaining with anti-AT(2) yielded one major immunoreactive band of 73-kDa size and one additional fainter band of 120 kDa. These antibodies may prove of value in unraveling the subcellular localization and intracellular effector pathways of AT(1) and AT(2).  相似文献   

7.
8.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

9.
Quantitative autoradiography was used to determine the subtype of ANG receptors in the red pulp of the rat spleen. The AT1 antagonist DuP 753 competed for ANG binding with high affinity; binding was abolished by dithiothreitol. The AT2 competitor CGP 42112 A showed lower affinity, and the AT2 competitor PD 123177 did not affect binding at 10(-5) M. These data indicated the presence of only AT1 receptors. AT1 receptor number was similar in immature (2 weeks old) and adult (8 weeks old) rats. Binding was sensitive to guanine nucleotides, suggesting an association with G-proteins. Angiotensin II, at a dose of 10(-7) M, stimulated inositol phosphate formation 33% over control values in spleen from 8-week-old rats. This effect was significantly blocked by 10(-5) M DuP 753. We suggest a possible role of AT1 receptors in the regulation of splenic volume, blood flow, and lymphocyte function.  相似文献   

10.
To delineate the molecular mechanism underlying the inverse agonist activity of olmesartan, a potent angiotensin II type 1 (AT1) receptor antagonist, we performed binding affinity studies and an inositol phosphate production assay. Binding affinity of olmesartan and its related compounds to wild-type and mutant AT1 receptors demonstrated that interactions between olmesartan and Tyr113, Lys199, His256, and Gln257 in the AT1 receptor were important. The inositol phosphate production assay of olmesartan and related compounds using mutant receptors indicated that the inverse agonist activity required two interactions, that between the hydroxyl group of olmesartan and Tyr113 in the receptor and that between the carboxyl group of olmesartan and Lys199 and His256 in the receptor. Gln257 was found to be important for the interaction with olmesartan but not for the inverse agonist activity. Based on these results, we constructed a model for the interaction between olmesartan and the AT1 receptor. Although the activation of G protein-coupled receptors is initiated by anti-clockwise rotation of transmembrane (TM) III and TM VI followed by changes in the conformation of the receptor, in this model, cooperative interactions between the hydroxyl group and Tyr113 in TM III and between the carboxyl group and His256 in TM VI were essential for the potent inverse agonist activity of olmesartan. We speculate that the specific interaction of olmesartan with these two TMs is essential for stabilizing the AT1 receptor in an inactive conformation. A better understanding of the molecular mechanisms of the inverse agonism could be useful for the development of new G protein-coupled receptor antagonists with inverse agonist activity.  相似文献   

11.
Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT(1) receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ).  相似文献   

12.
The localization of subtypes of the angiotensin II receptor has been determined by autoradiographic techniques using iodinated angiotensin II and two nonpeptide antagonists that exhibit selective affinities. DuP 753 specifically displaces type 1 sites (AII-1) and PD123177 inhibits only type 2 sites (AII-2). The rabbit adrenal cortex contains predominately AII-1 sites and the few AII-2 sites that are present are nonuniformly distributed. In the rabbit kidney, the fibrous outer sheath contains exclusively AII-2 sites whereas the glomeruli of the renal cortex and the renal medulla exhibit only AII-1 sites.  相似文献   

13.
CGP 42 112 A and DuP 753 block [125I]-angiotensin II binding in rabbit ventricular myocardial membranes in a clearly biphasic manner, indicating the existence of high- and low-affinity sites for these highly selective agents. Assays using concentrations of either agent large enough to prevent high-affinity binding show that their respective high-affinity sites are distinct, and each corresponds to the low-affinity site of the other. The two receptor subsets, present in nearly equal proportions, are also distinguishable by their different sensitivities to dithiothreitol. These findings afford strong evidence for the existence of two distinct angiotensin II receptors in rabbit myocardium, corresponding to the A and B subtypes recently described in adrenals.  相似文献   

14.
Moulik S  Speth RC  Rowe BP 《Life sciences》2000,66(16):PL233-PL237
In vitro receptor autoradiography was performed on rat brain and kidney sections stored frozen at -20 degrees C for extended time periods (17, 40, 64, 121, 183, 251, and 333 days). The results indicate that prolonged tissue storage has a differential effect upon 125I sar1ile8 angiotensin II binding to AT1 and AT2 receptor sites. Binding at AT1 receptor rich tissues studied (renal medulla, renal cortex, anterior pituitary, ventral hippocampus, spinal trigeminal nucleus, and nucleus of the solitary tract) shows a first order exponential decay pattern. The logarithmic linear regression slope (log(e) specific binding versus time), is significantly different from zero (p<0.05) in all AT1 rich tissues except for nucleus of the solitary tract (p=0.086). There is no detected loss of 125I sar1ile8 angiotensin II binding at the AT2 prominent regions in the superior colliculus, medial geniculate nucleus, and the inferior olivary nucleus. The half lives of AT1 receptors are highly variable, ranging from 36 days in the anterior pituitary to 442 days in the nucleus of the solitary tract, and this might be related to variable stability of AT1A and AT1B receptors. These observations should be taken into account when assessing and comparing AT1 and AT2 receptor subtype densities.  相似文献   

15.
The non-peptidic angiotensin II receptor subtype selective antagonists, DuP 753 and PD123177, were used to characterize angiotensin II receptor binding sites in the rat brain. Competitive receptor autoradiography with 125I-Sar1-Ile8 angiotensin II defined a regional distribution of binding sites that were sensitive to either DuP 753 (designated AII alpha subtype) or PD123177 (designated AII beta subtype). Whereas most brain nuclei could be assigned to a category containing a predominant subtype, a multiple receptor subtype analysis indicated that some regions are homogeneous, while others contain a mixture of both AII alpha and AII beta subtypes.  相似文献   

16.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists. The present study characterizes an ester-linked thiophosphate derivative (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT) of LPA. OMPT is a functional LPA analogue with potent mitogenic activity in fibroblasts. In contrast to LPA, OMPT does not couple to the pheromone response through the LPA(1) receptor in yeast cells. OMPT induces intracellular calcium increases efficiently in LPA(3) receptor-expressing Sf9 cells but poorly in LPA(2) receptor-expressing cells. Guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays in mammalian cells showed that LPA exhibits agonistic activity on all three LPA receptor subtypes, whereas OMPT has a potent agonistic effect only on the LPA(3) receptor. In transiently transfected HEK293 cells, OMPT stimulates mitogen-activated protein kinases through the LPA(3) but not the LPA(1) or LPA(2) receptors. Furthermore, OMPT-induced intracellular calcium mobilization in mammalian cells is efficiently inhibited by the LPA(1)/LPA(3) receptor-selective antagonist VPC12249. These results establish that OMPT is an LPA(3)-selective agonist. OMPT binding to the LPA(3) receptor in mammalian cells is sufficient to elicit multiple responses, including activation of G proteins, calcium mobilization, and activation of mitogen-activated protein kinases. Thus OMPT offers a powerful probe for the dissection of LPA signaling events in complex mammalian systems.  相似文献   

17.

Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT1 and AT2), defined as intracrine response. The aim of this study was to examine the presence of AT1 and AT2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT1 through an intracrine mechanism. Subcellular distribution of AT1 and AT2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.

  相似文献   

18.
In contrast to endothelin-1 (ET-1) and several of its analogues, sarafotoxin S6c (S6c) was a much more potent inhibitor of [125I]-ET-1 binding in rat hippocampus and cerebellum (Ki approximately 20 pM) than in rat atria and aorta (Ki approximately 4500 nM), suggesting the existence of ET-1 receptor subtypes (aorta/atria, ETA; hippocampus/cerebellum, ETB). S6c was a potent activator of PI turnover in hippocampus (EC50 approximately 10 nM) but not atria (EC50 greater than 1 microM), unlike ET-1 which was active in both tissues. S6c, therefore, is a highly selective ETB agonist. Furthermore, S6c was a potent pressor agent in the pithed rat (ED25 mm Hg approximately 0.1 nmoles/kg, i.v.), suggesting that the ETB receptor subtype may be important in cardiovascular function.  相似文献   

19.
A rat genomic Southern blot, probed with a type I angiotensin II receptor probe, demonstrated that two highly homologous type I angiotensin II receptors were present. A rat genomic library was subsequently screened and four clones were isolated. From restriction mapping, differential hybridization, polymerase chain reaction amplification and sequence analyses we have determined that there are two unique type I angiotensin II receptor genes. The first of these genes corresponds to the published rat vascular complementary DNA sequence; the second, corresponds to a novel receptor not previously described.  相似文献   

20.
Muscarinic acetylcholine receptor (mAChR) III expressed in Xenopus oocytes, like mAChR I, mediates activation of a Ca2+-dependent Cl current, whereas mAChR IV, like mAChR II, principally induces activation of Na+ and K+ currents in a Ca2+-independent manner. mAChR III has a sensitivity to agonist of about one order of magnitude higher than that of mAChR I in mediating the Ca2+-dependent current response in Xenopus oocytes and in stimulating phosphoinositide hydrolysis in NG108-15 neuroblastoma-glioma hybrid cells. The agonist-binding affinity of mAChR III is also about one order of magnitude higher than that of mAChR I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号