首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two improved methods are described for the measurement of thetotal surface area of mesophyll cells in leaf tissue. The firstinvolves stereological measurements on suspensions of enzymicallyisolated mesophyll cells; the second involves measurements ofthe total perimeter of mesophyll cell profiles on transversesections of the leaf, with allowance for curvature of the cellsurfaces by means of theoretically based correction factors.Application of the two methods to the mesophyll tissue of tobaccoleaves gave results which were in very good agreement with eachother. Both methods avoid the inaccuracies and uncertaintiesof previous methods for measurement of mesophyll cell surfaceareas. Key words: Mesophyll, Surface: Area  相似文献   

2.
The anatomical structure of the second leaf blade of barley{Hordeum vulgare L. cv. Koral) was studied in plants exposedto a photosynthetic photon flux density (PPFD) of 200 µmolm–2 s–1 compared with those grown under 25µmolm–2–11. Design-based stereological methods wereused for the estimation of various leaf anatomical characteristicssuch as mesophyll volume, proportion of intercellular spaces,number of mesophyll cells, mean mesophyll cell volume, and internalleaf surface area. The structure of the mesophyll was more affectedby different levels of PPFD than were the stomatal characteristics.Increased PPFD produced thicker leaves with a larger mesophyllvolume having a higher number of less elongated mesophyll cellsand a larger internal leaf surface area. Key words: Hordeum vulgare, light effect, mesophyll, stereology, stomata  相似文献   

3.
Recent design-based stereological methods for the measurementof the proportion of mesophyll in the leaf, the proportion ofintercellular spaces in the mesophyll, the leaf volume, themesophyll volume, and the exposed leaf surface area of mesophyllare described in an easy-to-follow manner. Two leaf types areconsidered: grass leaf and bifacial leaf. The presented methodsare discussed and compared with alternative methods. Key words: Cavalieri's principle, leaf, mesophyll, stereology, vertical sections  相似文献   

4.
Variation in Mesophyll Cell Number and Size in Wheat Leaves   总被引:1,自引:0,他引:1  
The numbers of mesophyll cells in wheat leaves were determinedin a variety of wheat species differing in ploidy level andin leaves from different positions on the wheat plant. Leafsize and mesophyll cell number are linearly related in bothcases but differences were observed in mesophyll cell numberper unit leaf area with changing leaf size. Where changes incell size are caused either by nuclear ploidy or leaf position,differences in mesophyll cell number per unit leaf are negativelycorrelated with mesophyll cell plan area. The decrease in cellsize with increasing leaf position also results in a greaternumber of chloroplasts per unit leaf area. These results arediscussed in relation to anatomical variation of the wheat leaf. Mesophyll cell, cell numbers, leaf size, Triticum  相似文献   

5.
SASAHARA  T. 《Annals of botany》1982,50(3):379-383
Numbers of mesophyll cells per unit leaf area decreased progressivelyfrom an upper leaf with a width of 3 cm towards the lower leaves.Enlargement of mesophyll cell size with leaf order accountedfor an increase or maintenance of mesophyll cell surface areaper unit leaf area. Increase of photosynthetic rates was correlatedwith increases of mesophyll cell surface area and nitrogen contentper unit leaf area. Therefore, in spite of an increase in cellsurface area to volume ratio with increase of mesophyll cellsize, it appears that increase of mesophyll cell surface areaand nitrogen content per unit leaf area enables a high rateof photosynthesis to be maintained. Brassica, photosynthesis, mesophyll surface area, nitrogen content, cell size, mesophyll resistance, leaf age  相似文献   

6.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

7.
This study examines interrelationships between eight leaf attributes (specific leaf mass, area, dry mass, lamina thickness, mesophyll cell number per cm2, mesophyll cell volume, chloroplast volume, and number of chloroplasts per mesophyll cell) in field-grown plants of 94 species from the Eastern Pamir Mountains, at elevations between 3800 and 4750 m. Unlike most other mountain areas, the Eastern Pamirs, Karakorum system, Tadjikistan provide localities where low temperatures and radiation combine with moisture stress at high altitudes. For all the attributes measured, significant differences were found between plants with different mesophyll types. Leaves with dorsiventral palisade structure (dorsal palisade, ventral spongy mesophyll cells) had thicker leaves with larger but fewer mesophyll cells, containing more and larger chloroplasts. These differences in mesophyll type are reflected in differences in the total surface of mesophyll cells per unit leaf area ( A mes/ A ) or volume ( A mes/ V ). Plants with isopalisade leaf structure (palisade cells under both dorsal and ventral surfaces) are more commonly xerophytes and their increased values of A mes/ A and A mes/ V decrease CO2 mesophyll resistance, which is an important adaptation to drought. Path analysis shows the critical importance of mesophyll cell volume in leading to the covariance between the different leaf attributes and hence to specific leaf mass (SLM), even though mesophyll cell volume is not itself strongly correlated with SLM. This is because mesophyll cell volume increases SLM through its effects on leaf thickness and chloroplast number per cell, but decreases SLM through its negative effect on mesophyll cell density.  相似文献   

8.
Leaf senescence is a genetically regulated stage in the plant life cycle leading to death. Ultrastructural analysis of a particular region of the leaf and even of a particular mesophyll cell can give a clear picture of the time development of the process. In this study we found relations between changes in mesophyll cell ultrastructure and pigment concentration in every region of the leaf during leaf senescence in maize and barley. Our observations demonstrated that each mesophyll cell undergoes a similar senescence sequence of events: a) chromatin condensation, b) degradation of thylakoid membranes and an increase in the number of plastoglobules, c) damage to internal mitochondrial membrane and chloroplast destruction. Degradation of chloroplast structure is not fully correlated with changes in photosynthetic pigment content; chlorophyll and carotenoid content remained at a rather high level in the final stage of chloroplast destruction. We also compared the dynamics of leaf senescence between maize and barley. We showed that changes to the mesophyll cells do not occur at the same time in different parts of the leaf. The senescence damage begins at the base and moves to the top of the leaf. The dynamics of mesophyll cell senescence is different in leaves of both analyzed plant species; in the initial stages, the process was faster in barley whereas in the later stages the process occurred more quickly in maize. At the final stage, the oldest barley mesophyll cells were more damaged than maize cells of the same age.  相似文献   

9.
Recent design-based stereological methods that can be applied to thick sections cut in an arbitrary direction are presented and their implementation for measuring mesophyll anatomical characteristics is introduced. These methods use software-randomized virtual 3D probes, such as disector and fakir test probes, in stacks of optical sections acquired using confocal microscopy. They enable unbiased estimations of the mean mesophyll cell volume, mesophyll cell number in a needle, and for the first time an internal surface area of needles or other narrow leaves directly from the fresh tissue cross-sections cut using a hand microtome. Therefore, reliable results can be obtained much faster than when using a standard microtechnical preparation. The proposed methods were tested on Norway spruce needles affected for 1 year by acid rain treatment. The effect of acid rain resulted in changes of mesophyll parameters: the ratio of intercellular spaces per mesophyll cell volume increased, while needle internal surface area, total number of mesophyll cells, and number of mesophyll cells per unit volume of a needle decreased in the treated needles.  相似文献   

10.
Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.  相似文献   

11.
Quantitative characteristics of mesophyll structure were compared in leaves of eleven alpine plant species grown under natural conditions in the Eastern Pamirs at various altitudes, from 3800 to 4750 m. Basic types of changes in mesophyll structure, associated with plant adaptation to mountain conditions, were characterized. These changes manifested themselves in different numbers of cell layers and cell sizes in the palisade tissue and, as a consequence, in changed leaf thickness and cell number per unit of leaf area. Three plant groups were identified by the changes in the leaf structural characteristics depending on the type of mesophyll structure, ecological group of plant species, and altitude of plant habitat. The first group comprised alpine xerophytes with an isopalisade structure, in which the volume of palisade cells decreased and their number per unit of leaf area increased with the altitude of plant habitat. The number of mesophyll layers and leaf thickness decreased or did not change with altitude. The second group comprised subalpine plant species with a dorsoventral structure of mesophyll; these species occur below the line of continuous night frost. In these plant species, the number of mesophyll layers, leaf thickness, and cell number per unit of leaf area increased with altitude. The third group comprised mesophyte plants with a dorsoventral and homogenous mesophyll structure, which are encountered in a wide range of habitats, including the nival belt (from 4700 to 5000 m). In this group, cell volume increased and cell number per unit of leaf area decreased with altitude. We present a general scheme of leaf structural changes, which explains the changes in the quantitative characteristics of mesophyll as a function of altitude and highland environmental conditions.  相似文献   

12.
Two genomic variants of a chickpea (Cicer arietinum L.) parental line have been developed which exhibit gigas characters. The two genotypes were the result of a single-gene mutation (gigas) and induced tetraploidy of a single parental line. The two genotypes plus parental strain were investigated to determine the similarity-of-effect of polyploidy and this single-gene mutation on leaf anatomy and morphology. Leaves consisted of two rows of alternatively arranged leaflets. Both the tetraploid and parental lines had the same mean number of leaflets per leaf while the gigas plants had fewer, but mean total leaf surface area was greater in the gigas plants. Quantitative comparison of mesophyll and vascular tissue and air space volume density (Vv) showed that leaves of the tetraploid plants had the greatest mesophyll cell density (Vvm) and least air space density. Mesophyll cell density was equal in the parental and single-gene mutant while parental leaves had the greatest vascular tissue density. The greater mesophyll cell density values of the polyploid were due to larger mean mesophyll cell size, not to greater cell numbers per unit area. Leaf models based on tissue density and leaflet size showed tetraploid plants had the greatest productivity potential per unit of leaflet surface area. However, if models were based on a whole leaf, gigas plants had the greatest productivity potential since they had larger total leaf area. The effectiveness of using structural models to predict physiological potential in plant tissues will be tested in future studies.  相似文献   

13.
Light propagation and distribution inside leaves have been recognized as important processes influencing photosynthesis. Monochromatic light absorption across the mesophyll was measured using chlorophyll fluorescence generated from illumination of the cut edge (epi-illumination), as well as the adaxial or abaxial surfaces of the leaf. Species were selected that had basic leaf types: laminar leaf with adaxial palisade layer (Rhododendron catawbiense), needle with palisade (Abies fraseri), and needle without palisade (Picea rubens). Fluorescence was more evenly distributed across the mesophyll for adaxially illuminated leaves with a palisade cell layer, as well as for the needles (cylindrical) without palisade, when compared to fluorescence generated by abaxial illumination. Moreover, fluorescence from green light illumination remained high across the mesophyll of adaxially illuminated R. catawbiense, indicating a possible influence of mesophyll structure on internal light distribution beyond that of chlorophyll levels. These data support the idea that light propagation within the mesophyll is associated with asymmetric mesophyll structure, in particular the presence of palisade cell layers. In addition, we propose that the evolution of a more cylindrical leaf form, such as found in conifer species, may be a structural solution to excessive sunlight that replaces the highly differentiated mesophyll found in most laminar-leaved species.  相似文献   

14.
青藏高原草地植物叶解剖特征   总被引:9,自引:3,他引:6  
运用常规石蜡制片技术对我国青藏高原66种草地植物优势种的叶解剖特征进行研究,并分析了叶解剖特征与海拔、生长季降水及生长季均温之间的关系.结果表明:青藏高原草地植物叶片具有很多适应高寒环境的结构特征,如表皮层厚且表皮细胞大小差异显著,表皮毛等表皮附属物发达,异细胞丰富,通气组织普遍发达等;叶片各组成部分厚度的变异程度不同,其中海绵组织厚度变异最大,其次为上角质层、下表皮层、下角质层、上表皮层、栅栏组织,叶片厚度的变异最小;青藏高原草地植物叶片各组成部分的厚度存在协同进化,上下角质层厚度呈强烈正相关,海绵组织厚度与叶片厚度相关性最强;青藏高原草地植物叶片各组成部分的厚度与海拔、生长季降水、生长季均温3个重要环境变量呈较弱的相关性,总体表现为随海拔升高叶片各组成部分的厚度减小,而随生长季降水和生长季均温的增加叶片厚度增加.  相似文献   

15.
Photosynthetic rates, chlorophyll content, and activities of several photosynthetic enzymes were determined per cell, per unit DNA, and per unit leaf area in five ploidal levels of the C4 dicot Atriplex confertifolia. Volumes of bundle sheath and mesophyll protoplasts were measured in enzymatic digestions of leaf tissue. Photosynthetic rates per cell, contents of DNA per cell, and activities of the bundle sheath enzymes ribulose 1,5-bisphosphate carboxylase (RuBPC) and NAD-malic enzyme per cell were correlated with ploidal level at 99% or 95% confidence levels, and the results suggested a near proportional relationship between gene dosage and gene products. There was also a high correlation between volume of mesophyll and bundle sheath cells and the ploidal level. Contents of DNA per cell, activity of RuBPC per cell, and volumes of cells were correlated with photosynthetic rate per cell at the 95% confidence level. The mesophyll cells did not respond to changes in ploidy like the bundle sheath cells. In the mesophyll cells the chlorophyll content per cell was constant at different ploidal levels, there was less increase in cell volume than in bundle sheath cells with an increase in ploidy, and there was not a significant correlation (at 95% level) of phosphoenolpyruvate carboxylase activity or content and pyruvate,Pi dikinase activity with increase in ploidy. The number of photosynthetic cells per unit leaf area progressively decreased with increasing ploidy from diploid to hexaploid, but thereafter remained constant in octaploid and decaploid plants. Numbers of cells per leaf area were not correlated with cell volumes. The mean photosynthetic rates per unit leaf area were lowest in the diploid, similar in 4×, 6×, and 8×, and highest in the decaploid. The photosynthetic rate per leaf area was highly correlated with the DNA content per leaf area.  相似文献   

16.
The expansion of plant leaves usually lasts 3–6 weeks and it is widely believed that most cell types (epidermal and mesophyll) continue to expand in unison over a similar time period. The evidence supporting this account was derived from studies of herb leaves. We observed in woody species, however, that the diameter of mesophyll cells (spongy and palisade) changed little during leaf expansion from about 5 to 100 % maximum size. To keep pace with epidermal cell enlargement and leaf area expansion, mesophyll cells divided but palisade cell length expanded as leaves grew thicker. The prolonged division of mesophyll and apparently unchanging mesophyll cell diameters constitute a novel pattern of leaf cell development, different from that previously described for herbs. Possible mechanisms that attribute the varied expansion direction and speed to the different cellulose distributions in woody and herbaceous species are suggested. This finding could contribute to an enhanced understanding of the overall mechanism of leaf development.  相似文献   

17.
Growth and mesostructure of the photosynthetic apparatus were studied in leaves of ten Triticum L. species. Plants with the Au genome were shown to develop larger leaf assimilation areas due to expanding areas of individual leaves and an increase in the absolute growth rate. Leaf and mesophyll thickness and mesophyll cell size decreased in the G-genome species. Leaf compactness, which depended on cell size and number per unit leaf area and leaf folding, determined the specific patterns of internal leaf organization in wheat species with diverse genotypes. These patterns did not affect cell plastid-to-cytoplasm ratio as shown by the stable indices of cell surface area/cell volume, cell surface area per chloroplast, and cell volume per chloroplast. The structural indices of leaf phototrophic tissues, mesophyll density, and mesophyll CO2 conductance in alloploids, as compared to diploid species, depended on both ploidy and genome constitution.  相似文献   

18.
应用植物解剖学、组织化学和植物化学方法,对光果甘草各营养器官的结构、总黄酮的组织化学定位和含量差异进行了研究.结果显示:(1)光果甘草叶为异面叶,由表皮、叶肉和叶脉组成.叶表皮具腺毛,叶肉中具胶囊细胞,主脉发达;茎由表皮(周皮)、皮层、维管柱组成,其髓中具有粘液细胞;根由周皮、次生维管组织组成,周皮具厚木栓层,次生维管组织中次生木质部和纤维发达.(2)黄酮类物质在叶中分布在表皮、腺毛、胶囊细胞、厚角组织和韧皮部和木质部中的薄壁细胞中;茎中分布在周皮、韧皮部和粘液细胞中;在根中则分布在周皮中.(3)不同营养器官中黄酮类物质含量存在差异:叶>根茎>主根>茎.(4)温度的下降促使黄酮类物质从地上合成器官向地下储藏器官的转运.建议每年可在果熟期和枯萎期之间采挖药材,地上部分收割也作药用,综合利用光果甘草资源.  相似文献   

19.
Observations of cellular organization are essential in understanding the mechanisms underlying leaf morphogenesis. These observations require several preparative steps, such as fixation and clearing of organs, and such procedures are time-consuming and labor-intensive for large-scale analyses. Thus, we have developed simple methods for the observation of leaf epidermal and mesophyll cells. To visualize the epidermis, a gel cast was made of the leaf surface, which was then observed under a light microscope. To visualize the leaf mesophyll cells, leaves were immersed in a solution containing Triton X-100, briefly centrifuged, and then viewed under a light microscope. These methods allowed us to conduct a histological phenome analysis for a large number of known and newly isolated leaf-shape/size mutants of Arabidopsis thaliana by measuring various parameters, including cell number, size, and distribution of cells within a leaf blade. Mutants showed changes in leaf size caused by specific increases or decreases in the number and/or size of cells. In addition, altered cell distributions in the leaf blade were observed, resulting from increases or decreases in the number of cells along the proximo-distal or medio-lateral axis, or recruitment of cells along a particular axis at the expense of other leaf parts. These results provide a phenomic view of the cellular behavior involved in organ size control and leaf-shape patterning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号