首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.  相似文献   

3.
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam(3)Cys-Ser-Lys(4), peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-beta expression: while TLR4 agonist induced the activation of IRF-3/IFN-beta pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-kappaB activation and NO production in microglia. Neutralizing Ab against IFN-beta attenuated TLR4-mediated microglial apoptosis. IFN-beta alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-beta, indicating that IFN-beta production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-beta production, which may act as an apoptotic sensitizer.  相似文献   

4.
5.
6.
7.
Mouse brain microglial cells undergo apoptosis on exposure to inflammatory stimuli, which is considered as an autoregulatory mechanism to control their own activation. Here, we present evidence that an antiproliferative B cell translocation gene 1 (BTG1) constitutes a novel apoptotic pathway of LPS/IFN-gamma-activated microglia. The expression of BTG1 was synergistically enhanced by LPS and IFN-gamma in BV-2 mouse microglial cells as well as in primary microglia cultures. Levels of BTG1 expression inversely correlated with a proliferative capacity of the microglial cells. Tetracycline-based conditional expression of BTG1 not only suppressed microglial proliferation but also increased the sensitivity of microglial cells to NO-induced apoptosis, suggesting a novel mechanism of cooperation between LPS and IFN-gamma in the induction of microglial apoptosis. An increase in BTG1 expression, however, did not affect microglial production of NO, TNF-alpha, or IL-1beta, indicating that the antiproliferative BTG1 is important in the activation-induced apoptosis of microglia, but not in the activation itself. The synergistic action of LPS and IFN-gamma in the microglial BTG1 induction and apoptosis was dependent on the Janus kinase/STAT1 pathway, but not IFN-regulatory factor-1, as demonstrated by a pharmacological inhibitor of Janus kinase (AG490), STAT1 dominant negative mutant, and IFN-regulatory factor-1-deficient mice. Taken together, antiproliferative BTG1 may participate in the activation-induced cell death of microglia by lowering the threshold for apoptosis; BTG1 increases the sensitivity of microglia to apoptogenic action of autocrine cytotoxic mediator, NO. Our results point out an important link between the proliferative state of microglia and their sensitivity to apoptogenic agents.  相似文献   

8.
We have previously shown that rat astrocytes undergo apoptosis upon inflammatory activation. Nitric oxide (NO) produced by activated astrocytes was the major cytotoxic mediator in this type of autoregulatory apoptosis. However, an inhibitor of nitric oxide synthase did not completely block the apoptosis of activated astrocytes, suggesting the presence of other apoptotic pathways. Here, we present evidence that caspase-11 is an essential molecule in NO-independent apoptotic pathway of activated astrocytes. Inflammatory activation (lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha treatment) of rat astrocyte cultures and C6 glioma cells led to the induction of caspase-11 followed by activation of caspases-11, -1, and -3. In contrast, NO donors induced activation of caspase-3 only. Inactivation of caspase-11 by the transfection of dominant negative mutant or treatment with the caspase inhibitors rendered the astrocytes partially resistant to the apoptosis following inflammatory activation, but not NO donor exposure. These results indicate that inflammatory stimuli not only induce the production of cytotoxic NO, but also initiate NO-independent apoptotic pathway through the induction of caspase-11 expression.  相似文献   

9.
Interferon gamma (IFNgamma) is known to inhibit proliferation of certain transformed cell lines. Recently, we have demonstrated the transactivation of the epidermal growth factor receptor (EGFR) in response to IFNgamma (Burova et al., 2007) and provided direct evidence for the dependence of IFNgamma-induced EGFR transactivation upon EGFR expression level in epithelial cells (Gonchar et al., 2008). This study examines an antiproliferative effect of IFNgamma on human epithelial cells lines A431 and HeLa which express high levels of EGFR, as well as HEK293, which expresses low levels of EGFR. We characterized the IFNgamma-induced changes in these cells by studying cell growth, the cell cycle and induction of apoptosis. The response to IFNgamma differed in the tested cell lines: cell growth was inhibited in both A431 and HeLa cells, but not in HEK293 cells, as shown by cell counts and MTT. The cell cycle phases analyzed by flow cytometry were disturbed in A431 and HeLa cells in response to IFNgamma. In contrast, IFNgamma treatment did not alter distribution by cell cycle phases in HEK293. Our results indicate that IFNgamma exhibit an antiproliferative effect depending on the increased expression of EGFR in A431 and HeLa cells. Further, it was demonstrated that IFNgamma induced the caspase 3 activation in A431 cells, suggesting an involvement of active caspase 3 in IFNgamma-induced apoptosis.  相似文献   

10.
11.
Previous results have indicated that lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma) inhibits nitric-oxide synthase (NOS)-I activity in glial cells. We report here that arachidonic acid (AA) plays a pivotal role in this response, which was consistently reproduced in different glial cell lines and in primary rat astrocytes. This notion was established using pharmacological inhibitors of phospholipase A2 (PLA2), cytosolic PLA2 (cPLA2) antisense oligonucleotides, and AA add-back experiments. This approach not only allowed the demonstration that AA promotes inhibition of NOS-I activity but also produced novel experimental evidence that LPS/IFNgamma itself is a potential stimulus for NOS-I. Indeed, LPS/IFNgamma fails to generate nitric oxide (NO) via NOS-I activation simply because it activates the AA-dependent signal that impedes NOS-I activity. Otherwise, LPS/IFNgamma promotes NO formation, sensitive to exogenous AA, in cells in which cPLA2 is pharmacologically inhibited or genetically depleted. Because NO suppresses the NFkappaB-dependent NOS-II expression, inactivation of NOS-I by the LPS/IFNgamma-induced AA pathway provides optimal conditions for NFkappaB activation and subsequent NOS-II expression. Inhibition of cPLA2 activity, while reducing the availability of AA, consistently inhibited NFkappaB activation and NOS-II mRNA induction and delayed NO formation. These responses were promptly reestablished by addition of exogenous AA. Finally, we have demonstrated that the LPS/IFNgamma-dependent tyrosine phosphorylation of NOS-I and inhibition of its activity are mediated by endogenous AA.  相似文献   

12.
13.
14.
15.
Fas-induced apoptosis is one form of programmed cell death responsible for hepatocyte demise. However, the role of this cell surface receptor in the death of tumoral hepatic cells is still being debated. It has been shown that some hepatoma cell lines may escape apoptosis because of abnormal Fas localization correlated with non-functionality of the Fas protein or dysfunctionality in the Fas pathway cascade. The aim of this study was to investigate the behaviour of four hepatoma cell lines, HepG2, Hep3B, SKHep1 and Chang-Liver and two extrahepatic cell lines, MCF7, a mammary tumoral cell line and OVCAR-3, an ovarian tumoral cell line, when they were treated with an agonistic anti-Fas antibody alone, with interferon gamma (IFNgamma), an up-regulator of Fas protein expression, alone or with a combination of both agents. We first performed immunofluorescence and flow cytometry to confirm that Fas was present on the cell surface of each cell line in the normal state. Apoptosis was then investigated after induction with the various treatments, by DAPI staining, agarose gel DNA electrophoresis and PARP cleavage. Caspase 8 and 3 expression, as well as two anti-apoptotic proteins Bcl-2 and HSP70, and one proapoptotic protein Bax were also investigated by immunoblot allowing identification of several apoptotic pathways based on the behaviour of the different studied proteins. HepG2 and OVCAR-3 cells were sensitive to the anti-Fas antibody alone. Hep3B was resistant to Fas-induced apoptosis but sensitive to IFNgamma-induced apoptosis. MCF7 was resistant to anti-Fas antibody and IFNgamma Chang-Liver and SKHep1 were sensitive to IFNgamma and anti-Fas antibody but at different degrees. Chang-Liver used the Fas and IFNgamma pathways, while SKHep1 involved mostly the Fas pathway. These results show that each tumor cell line is characterized by different apoptotic behaviour in relation to Fas and/or IFNgamma-induced apoptosis. In addition, despite the high level of Bcl-2 and HSP70 proteins in the tumoral cells investigated here, they were not fully protected against apoptosis, except for MCF7. This emphasizes the necessity to analyse the different proteins responsible for apoptosis to adapt anti-tumoral therapeutics.  相似文献   

16.
Following Gram-negative bacterial infection there is a reduction in matrix-producing cells. The goal of the present study was to examine the apoptotic effects of lipopolysaccharide (LPS) on fibroblastic cells and to investigate the role that the host response plays in this reaction. This was accomplished in vivo by subcutaneous inoculation of LPS in wild type and TNFR1(-/-)R2(-/-) mice. The direct effects of LPS on fibroblast apoptosis was studied in vitro with normal diploid human fibroblasts. The results indicate that LPS in vivo induces apoptosis of fibroblasts. By RNA profiling we demonstrated that LPS stimulates global expression of apoptotic genes and down-regulates anti-apoptotic genes. Fluorometric studies demonstrated that LPS in vivo significantly increased caspase-8 and caspase-3 activity and by use of specific inhibitors, the activation of caspase-3 was shown to be initiated by caspase-8 with no contribution from caspase-9. In vitro studies demonstrated that LPS did not induce apoptosis of fibroblasts, whereas tumor necrosis factor (TNF) did. In addition, the pattern of apoptotic gene expression induced by TNF in vitro was nearly identical to that induced by LPS in vivo, as measured by RNase protection assay. Moreover, pre-treatment of cells with TNF greatly enhanced apoptosis induced by a second stimulation with TNF 24 h later, suggesting that the global induction of pro-apoptotic genes was functionally significant. Thus, LPS acts to modulate the expression of a large number of genes that favor apoptosis of fibroblastic cells that is dependent upon activation of caspase-8 and is largely mediated by TNF.  相似文献   

17.
18.
19.
We investigated the molecular mechanism of the synergism between interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) documented in a variety of biological occasions such as tumor cell death and inflammatory responses. IFNgamma/TNFalpha synergistically induced apoptosis of ME-180 cervical cancer cells. IFNgamma induced STAT1 phosphorylation and interferon regulatory factor 1 (IRF-1) expression. Transfection of phosphorylation-defective STAT1 inhibited IFNgamma/TNFalpha-induced apoptosis, whereas IRF-1 transfection induced susceptibility to TNFalpha. Dominant-negative IkappaBalpha transfection sensitized ME-180 cells to TNFalpha. IFNgamma pretreatment attenuated TNFalpha- or p65-induced NF-kappaB reporter activity, whereas it did not inhibit p65 translocation or DNA binding of NF-kappaB. IRF-1 transfection alone inhibited TNFalpha-induced NF-kappaB activity, which was reversed by coactivator p300 overexpression. Caspases were activated by IFNgamma/TNFalpha combination; however, caspase inhibition did not abrogate IFNgamma/TNFalpha-induced cell death. Instead, caspase inhibitors directed IFNgamma/TNFalpha-treated ME-180 cells to undergo necrosis, as demonstrated by Hoechst 33258/propidium iodide staining and electron microscopy. Taken together, our results indicate that IFNgamma and TNFalpha synergistically act to destroy ME-180 tumor cells by either apoptosis or necrosis, depending on caspase activation, and STAT1/IRF-1 pathways initiated by IFNgamma play a critical role in IFNgamma/TNFalpha synergism by inhibiting cytoprotective NF-kappaB. IFNgamma/TNFalpha synergism appears to activate cell death machinery independently of caspase activation, and caspase activation seems to merely determine the mode of cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号