首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct end label method was used to study the positioning of nucleosome arrays on several long (greater than 2200 base pairs) SV40 DNA fragments reconstituted in vitro with core histones. Comparison of micrococcal nuclease cutting sites in reconstituted and naked DNA fragments revealed substantial differences in one DNA region. When sufficient core histones were annealed with the DNA to form closely spaced nucleosomes over most of the molecule, a uniquely positioned array of four nucleosomes could be assigned, by strict criteria, to a 610-base pair portion of the SV40 "late region," with a precision of about +/- 20 base pairs. In some other DNA regions, a number of alternative nucleosome positions were indicated. The uniquely positioned four-nucleosome array spanned the same 610 nucleotides on two different DNA fragments that possessed different ends. Removal of a DNA region that had contained a terminal nucleosome of the array, by truncation of the fragment before reconstitution, did not affect the positioning of the other three nucleosomes. As the core histone to DNA ratio was lowered, evidence for specific positioning of nucleosomes diminished, except within the region where the four uniquely positioned nucleosomes formed. This region, however, does not appear to have a higher affinity for core histones than other regions of the DNA.  相似文献   

2.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

3.
Positioning of nucleosomes was examined in a reconstituted system using a plasmid DNA and histones from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells. The present studies indicate that the arrangement of nucleosomes, composed of normal human histones, in a region near the SV40 origin of replication on the plasmid DNA, is nonrandom. The alignment of nucleosomes in this region was not affected by the presence of histone H1. No difference in nucleosome positioning was observed when the nucleosomes were composed of histones from XPA cells.  相似文献   

4.
Nucleosomes were reconstituted in vitro from a fragment of DNA spanning the simian virus 40 minimal replication origin. The fragment contains a 27-base-pair palindrome (perfect inverted repeat). DNA molecules with stable cruciform structures were generated by heteroduplexing this DNA fragment with mutants altered within the palindromic sequence (C. Nobile and R. G. Martin, Int. Virol., in press). Analyses of the structural features of the reconstituted nucleosomes by the DNase I footprint technique revealed two alternative DNA-histone arrangements, each one accurately phased with respect to the uniquely labeled DNA ends. As linear double-stranded DNA, a unique core particle was formed in which the histones strongly protected the regions to both sides of the palindrome. The cruciform structure seemed to be unable to associate with core histones and, therefore, an alternative phasing of the histone octamer along the DNA resulted. Thus, nucleosome positioning along a specific DNA sequence appears to be influenced in vitro by the secondary structure (linear or cruciform) of the 27-base-pair palindrome. The formation of cruciform structures in vivo, if they occur, might therefore represent a molecular mechanism by which nucleosomes are phased.  相似文献   

5.
Disruption of the nucleosomes at the replication fork.   总被引:16,自引:5,他引:11       下载免费PDF全文
C Gruss  J Wu  T Koller    J M Sogo 《The EMBO journal》1993,12(12):4533-4545
The fate of parental nucleosomes during chromatin replication was studied in vitro using in vitro assembled chromatin containing the whole SV40 genome as well as salt-treated and native SV40 minichromosomes. In vitro assembled minichromosomes were able to replicate efficiently in vitro, when the DNA was preincubated with T-antigen, a cytosolic S100 extract and three deoxynucleoside triphosphates prior to chromatin assembly, indicating that the origin has to be free of nucleosomes for replication initiation. The chromatin structure of the newly synthesized daughter strands in replicating molecules was analysed by psoralen cross-linking of the DNA and by micrococcal nuclease digestion. A 5- and 10-fold excess of protein-free competitor DNA present during minichromosome replication traps the segregating histones. In opposition to published data this suggests that the parental histones remain only loosely or not attached to the DNA in the region of the replication fork. Replication in the putative absence of free histones shows that a subnucleosomal particle is randomly assembled on the daughter strands. The data are compatible with the formation of a H3/H4 tetramer complex under these conditions, supporting the notion that under physiological conditions nucleosome core assembly on the newly synthesized daughter strands occurs by the binding of H2A/H2B dimers to a H3/H4 tetramer complex.  相似文献   

6.
The fate of parental nucleosomes during the replication of chromatin templates was studied using a modification of the cell-free SV40 DNA replication system. Plasmid DNA molecules containing the SV40 origin were assembled into chromatin with purified core histones and fractionated assembly factors derived from HeLa cells. When these templates were replicated in vitro, the resulting progeny retained a nucleosomal organization. To determine whether the nucleosomes associated with the progeny molecules resulted from displacement of parental histones during replication followed by reassembly, the replication reactions were performed in the presence of control templates. It was observed that the progeny genomes resulting from the replication of chromatin templates retained a nucleosomal structure, whereas the progeny of the control DNA molecules were not assembled into chromatin. Additional experiments, involving direct addition of histones to the replication reaction mixtures, confirmed that the control templates were not sequestered in some form which made them unavailable for nucleosome assembly. Thus, our data demonstrate that parental nucleosomes remain associated with the replicating molecules and are transferred to the progeny molecules without displacement into solution. We propose a simple model in which nucleosomes ahead of the fork are transferred intact to the newly synthesized daughter duplexes.  相似文献   

7.
DNA fragments containing either one or both of the 72-base pair (bp) elements which constitute the SV40 enhancer and the three adjacent 21-bp repeats were associated with histone octomers from chicken erythrocytes in vitro. Both fragments formed complexes with electrophoretic mobilities of nucleosomes containing the appropriate length of DNA. Analysis of DNase I cutting of uniquely end-labeled complexes suggests that the fragment containing a single 72-bp element forms a positioned core particle. Control experiments show that positioning is not due to the 21-bp repeats or to end effects. The fragment with a tandem repeat of the 72-bp element also does not associate randomly with histones. The data are consistent with formation of a core particle on one or the other of the repeated enhancer sequences. We discuss possible functional consequences of such nucleosome positioning.  相似文献   

8.
We have assessed the ability of nucleosomes to influence the formation of mammalian topoisomerase II-DNA complexes by mapping the sites of cleavage induced by four unrelated topoisomerase II inhibitors in naked versus nucleosome-reconstituted SV40 DNA. DNA fragments were reconstituted with histone octamers from HeLa cells by the histone exchange method. Nucleosome positions were determined by comparing micrococcal nuclease cleavage patterns of nucleosome-reconstituted and naked DNA. Three types of DNA regions were defined: 1) regions with fixed nucleosome positioning; 2) regions lacking regular nucleosome phasing; and 3) a region around the replication origin (from position 5100 to 600) with no detectable nucleosomes. Topoisomerase II cleavage sites were suppressed in nucleosomes and persisted or were enhanced in linker DNA and in the nucleosome-free region around the replication origin. Incubation of reconstituted chromatin with topoisomerase II protected nucleosome-free regions from micrococcal nuclease cleavage without changing the overall micrococcal nuclease cleavage pattern. Thus, the present results indicate that topoisomerase II binds preferentially to nucleosome-free DNA and that the presence of nucleosomes at preferred DNA sequences influences drug-induced DNA breaks by topoisomerase II inhibitors.  相似文献   

9.
M M Seidman  A J Levine  H Weintraub 《Cell》1979,18(2):439-449
  相似文献   

10.
Mouse liver DNA was cut out with BamHI and cloned into YIp5, which contained the URA3 gene of Saccharomyces cerevisiae in pBR322. Of the several plasmids isolated, two plasmids, pMU65 and pMU111, could transform S. cerevisiae from the URA- to the URA+ phenotype and could replicate autonomously within the transformant, indicating that mouse DNA fragments present in pMU65 or pMU111 contain autonomously replicating sequences (ARS) for replication in S. cerevisiae. Furthermore, to determine the correlation between ARS function in yeast cells and that in much higher organisms, we tried to challenge these plasmids with the simian virus 40 (SV40) DNA replication system. Of the two plasmids tested, the EcoRI-BglII region of pMU65 could be hybridized with a chemically synthesized 13-nucleotide fragment corresponding to the origin region of SV40 DNA. Both pMU65 (the EcoRI-BglII region cloned in pBR322) and its subclone pMU65EB could replicate semiconservatively, and initiation of DNA replication started from the EcoRI-BglII region when the replicating activity of these plasmids was tested in the in vitro SV40 DNA replication system we have established before. Furthermore, pMU65 and pMU65EB could replicate autonomously within monkey Cos cells which produce SV40 T antigen constitutively. These results show that a 2.5-kilobase fragment of the EcoRI-BglII region in pMU65 contains the ARS needed for replication in the SV40 DNA replication system.  相似文献   

11.
12.
A soluble system was developed that could support DNA replication in simian virus 40 (SV40) chromosomes. DNA synthesis in this system required the presence of purified SV40 large tumor antigen, SV40 chromosomes prepared from virus-infected monkey cells, a crude extract from HeLa cells, and several low-molecular-weight components. In comparison to the replication of purified SV40 form I DNA, the rate of DNA synthesis was 15 to 20% in this system. DNA synthesis started near the replication origin of SV40 and proceeded bidirectionally in a semiconservative manner. Micrococcal nuclease digestion experiments revealed that the replicated DNA produced in this system became organized into a regularly spaced array of nucleosome core particles when an appropriate amount of purified HeLa core histones was added to the reaction mixture. SV40 form I DNA replicating under the same conditions was also assembled into nucleosomes, which were arranged in a rather dispersed manner and formed an aberrant chromatin structure.  相似文献   

13.
The DNA structure of a fragment containing the SV40 termination sequences was examined using gel mobility assays. The region is shown to contain a DNA bend as evidenced by an abnormal mobility that is progressively accentuated as the temperature is lowered. This represents the strongest example of DNA bending among the collection of SV40 fragments studied. The same fragment was shown previously to uniquely support hyper-stable nucleosome formation in vitro, suggesting a possible relationship between DNA bending and nucleosome stability.  相似文献   

14.
The yeast GAL1-10 UAS region readily accepts nucleosomes in vitro   总被引:2,自引:0,他引:2  
M Rainbow  J Lopez  D Lohr 《Biochemistry》1989,28(18):7486-7490
To test if the absence of nucleosomes on the UAS region of the yeast GAL1-10 genes in vivo could be due to a low inherent affinity of this DNA for histones, DNA fragments containing the UAS and various amounts of flanking DNA were reconstituted into chromatin. Restriction enzyme and DNase I digestion analyses show that DNA in the UAS becomes protected against digestion in the reconstitutes. Thus, nucleosomes can assemble on the UAS region in vitro. The level of protection of the UAS and of the flanking DNA regions is comparable and remains so at various levels of nucleosome loading, suggesting that the UAS DNA has no tendency to exclude nucleosomes. In fact, DNase I results suggest that the UAS elements themselves preferentially bind histones.  相似文献   

15.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

16.
C Crémisi  A Chestier  M Yaniv 《Cell》1977,12(4):947-951
The assembly of newly synthesized histones into nucleosomes during replication of SV40 minichromosomes in vivo was studied. Infected cells were labeled with 35S-methionine for a time shorter than that required to complete a round of viral DNA replication. Mature and replicating SV40 minichromosomes were extracted and separated by zonal sedimentation, and their histone content was analyzed by polyacrylamide gel electrophoresis (SDS and acidic urea). We show that the pulse-labeled histones associate preferentially with the replicating DNA.  相似文献   

17.
We have characterized the biochemical activities of purified polyoma (Py) large T antigen (T Ag) that was capable of mediating the replication of a plasmid containing the Py origin (ori(+) DNA) in mouse cell extracts. We report here that like the T Ag encoded by simian virus 40 (SV40), Py T Ag has DNA helicase and double-stranded DNA fragment unwinding activities. Py T Ag displaced DNA fragments greater than 1,600 nucleotides which were annealed to complementary sequences in single-stranded M13 by translocating in the 3' to 5' direction. Both helicase and double-stranded DNA fragment unwinding reactions were completely dependent upon NTP hydrolysis, displaying a strong preference for ATP and dATP. At low T Ag concentrations, significantly more Py ori(+) DNA fragment was unwound compared with a fragment lacking the replication origin. However, at higher ratios of Py T Ag to DNA, equivalent to those used in replication reactions, unwinding of both ori-containing and -lacking fragments was equally efficient. This is in contrast to SV40 T Ag which exhibited a more stringent requirement for SV40 origin sequences under similar conditions. Furthermore, some of the nucleotides that supported the helicase and unwinding activities of Py T Ag were different from those for the same SV40 T Ag reactions. We have also observed that in contrast to the very poor replication of linear SV40 ori(+) DNA by SV40 T Ag in human cell extracts, linear Py ori(+) DNA was replicated efficiently in mouse cell extracts by Py T Ag. However, despite the fact that linear Py ori(+), SV40 ori(+), and ori(-) DNA fragments could be unwound with comparable efficiency by Py T Ag, only fragments containing the Py replication origin were replicated in vitro. These results suggest that the initiation of DNA synthesis at the Py origin of replication requires features in addition to unwinding of the template.  相似文献   

18.
We have found that nucleosomes reconstituted from histone octamers and SV40 DNA Form I by progressively decreasing the salt concentration from 2 M NaCl are formed preferentially around 0.27, 0.37, 0.50 and 0.85 on SV40 DNA (relative to the EcoRI site). When SV40 DNA Form III is used, the nucleosomes form mainly at 0.28, 0.38, 0.61 and 0.83. These sites are very close to both the sites of RNA chain initiation by calf thymus RNA polymerase B on SV40 DNA Form I (0.25, 0.35, 0.42 and 0.88) and the regions of the supercoiled DNA which are readily denaturable by T4 gene 32 protein (0.25, 0.47 and 0.88), and correspond to AT-rich regions as deduced from the nucleotide sequence of SV40 DNA. The physiologically important region around 0.67 is an unfavourable site for all three types of proteins, and corresponds to a GC-rich region surrounding a 17 base pair AT cluster.  相似文献   

19.
Stability of nucleosomes in native and reconstituted chromatins.   总被引:35,自引:19,他引:16       下载免费PDF全文
The stability of nucleosomes of SV40 minichromosomes extracted from infected cells or reconstituted by association of SV40 DNA and the four histones H2A, H2B, H3 and H4 was studied as a function of the ionic strength. As a measure of the stability of the nucleosome, we followed the disappearance of the nucleosomes from the original chromatin and their appearance on a "competing" DNA. We show here that the DNA and the histone components of the nucleosomes do not apprecially dissociate below 800 mM NaCl. At 800 mM and above, the histone moiety of the nucleosomes can dissociate from the DNA and efficiently participate to the formation of nucleosomes on a "competing" DNA.  相似文献   

20.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号