首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fall biological processes are driven by a combination of environmental factors, with cumulative effects over the length of the growing season, which are currently difficult to model. This study evaluated if leaf color change in fall (i.e., leaf yellowing) and brook trout spawning could be two biological processes that are synchronized at a regional scale and if leaf yellowing could be used to determine the peak of spawning activity of this species. To this end, we surveyed 551 brook trout redds and examined 193 digital images of forest trees in the Laurentides Wildlife Reserve (Québec, Canada) over the fall season. Results showed that leaf yellowing and brook trout spawning were synchronized, providing one of the first examples of temporal matching between freshwater and terrestrial biological processes at the regional scale. Considering the difficulty of monitoring the phenology of freshwater fish spawning at high spatial and temporal resolution, terrestrial integrators of environmental conditions, such as leaf color change, may prove to be promising predictors of spawning activity in the management of fish populations.  相似文献   

2.
Synopsis Stunting in freshwater fish populations may be due to low availability of one or more prey components within their diet. If the limiting prey constitute a trophic level (i.e. zooplankton, benthos, or fish), we define the phenomenon as a trophic bottleneck. Growth of a non-stunted population of yellow perch, Perca flavescens, was simulated using an allocation model based on reported ontogenetic shifts in diet (planktivory to benthivory to piscivory). The model was then perturbed by limiting the available ration individually for each of the three feeding types. The resulting simulated growth curves all reflected lower growth rates than the unperturbed state and the shape of the curve differed between the limited food types. Only the reduced benthic ration produced a simulated growth that matched that observed for the stunted yellow perch of Lac Hertel (Québec). To test the hypothesis that benthic ration was limiting growth in Lac Hertel, all the fish species in the lake were sampled for diet composition and total length at age. We predicted that species feeding upon benthic invertebrates should exhibit the slow growth characteristic of stunting (based on the results of the allocation model). Of the seven fish species found in Lac Hertel, four were stunted: yellow perch, pumpkinseed, Lepomis gibbosus, rock bass, Ambloplites rupestris, and brown bullhead, Ictalurus nebulosus. Three species were non-stunted: northern pike, Esox lucius, golden shiner, Notemigonus crysoleucas, and white sucker, Catostomus commersoni. All stunted species fed on benthic invertebrates and all non-stunted species, except the white sucker, did not feed upon benthos. The prediction of the allocation model was thus supported.  相似文献   

3.
Trade-off between egg mass and egg number in brown trout   总被引:2,自引:0,他引:2  
Individual egg mass and fecundity increased with somatic mass in first time and repeat spawning wild anadromous and freshwater resident brown trout Salmo trutta . The egg mass was larger for similar-sized trout in south (58° N) than mid Norway (63° N), whereas fecundity was higher in mid- than in south Norway, making total gonadal investment similar in the two areas. Repeat spawners had heavier eggs than similar-sized first time spawners. The egg mass of residents was c. 10% larger than that of similar-sized first time spawning anadromous trout. Common garden experiments with offspring of wild anadromous trout showed no significant correlation between egg and somatic mass in first time spawners in two of the three populations studied. In the third population, a slight positive correlation was found. Similar results were found for repeat spawners. In the three populations, fecundity increased significantly with somatic mass in both first time and repeat spawners. Wild and hatchery-reared trout showed negative correlation between egg mass and fecundity when the effect of body size was excluded, indicating a trade-off between the two parameters. In wild trout, this was caused by variation among populations, whereas in hatchery fish, within population variation was observed in egg mass over fecundity. Furthermore, the egg mass of first time and repeat spawners were positively correlated, when adjusted for fish size. Size-specific gonadal investment was significantly higher in wild anadromous than resident trout. There was no significant difference in gonadal investment between first time and repeat spawners in wild anadromous trout. However, in the hatchery-reared trout, gonadal investment was significantly higher at repeat than first time maturation. The hatchery trout did not spawn naturally, but were artificially stripped. Among populations, a part of the variation in egg mass and fecundity is phenotypically plastic, a part appears genetically determined.  相似文献   

4.
Many lake trout Salvelinus namaycush spawn in shallow areas along windswept shores. However, precise determination of time and location of spawning is limited by its nocturnal occurrence, and possibly by some postulated, but unproven, spawning in deep water by certain populations. In White Pine Lake, Ontario, a well-studied experimental lake, lake trout spawn in two shallow locations where some direct observation is possible. Radiotelemetry apparatus was used in 1991 to obtain records of the electromyograms (EMGs) produced by muscle activity in one adult male and one adult female lake trout, captured from the lake before their reproductive period and returned to the lake at the beginning of the spawning period. Both fish survived, though only the male was detected as active over the main spawning site, where it showed evening EMG activity patterns indicating considerable activity. At other times of day, when not located over the spawning site, but present elsewhere in the lake, the male's EMG (i.e. muscle) values were considerably reduced. At the cessation of the spawning period, the transmitter-equipped male's EMG record showed no further pattern indicative of high activity during what had formerly been the daily spawning period. The female was tracked as she moved around the lake, but based on both her location and level of EMG activity, is thought not to have spawned. In 1992, a second male was captured, equipped with a transmitter and released again. This fish failed to show spawning activity but, as with the 1991 female, moved fairly considerable distances in the lake. In one instance, in a swim of short duration (6 min), well away from the spawning grounds, this fish displayed EMG activity levels resembling those of the high activity of spawning. The results obtained appear to demonstrate that EMG telemetry could be used to assess the level of muscular activity occurring in lake trout, especially in relation to reproductive behaviour, and when they cannot be directly observed.  相似文献   

5.
The spread of furunculosis in salmonids in Norwegian rivers   总被引:3,自引:0,他引:3  
Furunculosis was first discovered in a fish farm in Norway in 1964, following the importation of rainbow trout from Denmark. The disease spread to several farms and to wild fish in the River Numedalslågen, occurring there until 1979. It was eradicated at several farms, the last being disinfected in 1969. In 1985, furunculosis was discovered in marine fish farms in Nord-Trøndelag, following importation of salmon smolts from Scotland. The disease reached Møre og Romsdal in 1988, by which time 32 fish farms were infected in the two counties. By the end of 1992, 550 farms were infected. The disease spread concurrently in natural watercourses, from 22 in 1989, to 74 by the end of 1992. Rapid spread of the disease was associated with several factors including escapes from fish farms, possibly via transport of fish between farms, and natural movement of wild fish in the sea. The disease was not associated with particular physical characteristics in these watercourses, but large aggregations of fish beneath waterfalls combined with high water temperature may trigger disease outbreaks. The ecological consequences of furunculosis are not known. However, some river populations of adult salmon, sea trout and brown trout have suffered. Furunculosis may result in serious negative consequences for populations if a significant number of the brood stock die before spawning.  相似文献   

6.
Arctic charr are characterized by an extensive variability in growth and body size in natural waters. Although growth traits may involve a significant heritable component, most of this intraspecific variation presumably is environmentally induced and thus attributable to phenotypic plasticity. In the present study, size-at-age and length–weight relationship (body condition) were assessed for three Finnish Arctic charr populations of different geographical origins and extreme size forms (a stunted vs. two large-growing, predatory charr) held under standardized rearing conditions for 3 years (up to 37 months after hatching). In particular, our interest was to investigate whether the differences in growth between the large and the stunted charr as observed in the wild populations would diminish when the fish are offered suitable food in abundance. Population-specific mean body size and condition differed significantly in 0+, 1+, 2+ and 3+ fish. However, the identical rearing conditions resulted in the originally stunted charr reaching a comparable final mean size (317 mm/427 g) as the large charr populations (343 mm/510 g and 359 mm/497 g). Some individuals were of the same size as their parents at spawning already at the age of 0+ years. Furthermore, length–weight regression residuals of the stunted charr developed to a notably high level, indicating the largest final condition mean. The increase of size variation (CV of weight) in stunted charr lasted for over two growth seasons, whereas in large charr it remained stable since the end of the first summer. Variations in mortality and sexual maturation at age 2 seemed to be less relevant factors affecting overall growth performance. The study demonstrates an example of the high plasticity involved in the growth of fish: the stunted charr possess a tremendous capacity for growth in a benign environment, virtually corresponding to that observed in the large predatory populations.  相似文献   

7.
Habitat fragmentation is a growing problem worldwide. Particularly in river systems, numerous dams and weirs hamper the movement of a wide variety of species. With the aim to preserve connectivity for fish, many barriers in river systems are equipped with fishways (also called fish passages or fish ladders). However, few fishways provide full connectivity. Here we hypothesized that restricted seasonal opening times of fishways can importantly reduce their effectiveness by interfering with the timing of fish migration, for both spring‐ and autumn‐spawning species. We empirically tested our hypothesis, and discuss the possible eco‐evolutionary consequences of affected migration timing. We analyzed movements of two salmonid fishes, spring‐spawning European grayling (Thymallus thymallus) and autumn‐spawning brown trout (Salmo trutta), in Norway's two largest river systems. We compared their timing of upstream passage through four fishways collected over 28 years with the timing of fish movements in unfragmented river sections as monitored by radiotelemetry. Confirming our hypothesis, late opening of fishways delayed the migration of European grayling in spring, and early closure of fishways blocked migration for brown trout on their way to spawning locations during late autumn. We show in a theoretical framework how restricted opening times of fishways can induce shifts from migratory to resident behavior in potamodromous partial migration systems, and propose that this can induce density‐dependent effects among fish accumulating in lower regions of rivers. Hence, fragmentation may not only directly affect the migratory individuals in the population, but may also have effects that cascade downstream and alter circumstances for resident fish. Fishway functionality is inadequate if there is a mismatch between natural fish movements and fishway opening times in the same river system, with ecological and possibly evolutionary consequences for fish populations.  相似文献   

8.
Genetic analyses of coastal Oncorhynchus mykiss, commonly known as steelhead/rainbow trout, at the southern extreme of their geographic range in California are used to evaluate ancestry and genetic relationships of populations both above and below large dams. Juvenile fish from 20 locations and strains of rainbow trout commonly planted in reservoirs in the five study basins were evaluated at 24 microsatellite loci. Phylogeographic trees and analysis of molecular variance demonstrated that populations within a basin, both above and below dams, were generally each other’s closest relatives. Absence of hatchery fish or their progeny in the tributaries above dams indicates that they are not commonly spawning and that above-barrier fish are descended from coastal steelhead trapped at dam construction. Finally, no genetic basis was found for the division of populations from this region into two distinct biological groups, contrary to current classification under the US and California Endangered Species Acts.  相似文献   

9.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

10.
Hybridization with introduced species represents a serious threat to the persistence of many native fish populations. Brook trout (Salvelinus fontinalis) have been introduced extensively throughout the native range of bull trout (S. confluentus) and hybridization has been documented in several systems where they co-exist and is seen as a significant threat to the persistence of bull trout populations. We identified a group of diagnostic microsatellite loci to differentiate bull trout and brook trout and then used these loci to examine the spatial distribution of hybrids in the Malheur River basin, Oregon USA. In random samples of approximately 100 fish from each of three creeks we identified 181 brook trout, 112 bull trout and 14 hybrids. Although bull trout, brook trout and hybrids were found in all three creeks, they were not evenly distributed; brook trout were primarily found in the lower sections of the creeks, bull trout further upstream, and hybrids in the areas of the greatest overlap. One creek with a population of brook trout in a headwater lake provided an exception to this pattern; brook trout were found distributed throughout the creek downstream of the lake. Several post-F1 hybrids were identified suggesting that hybrids are reproducing in the Malher River Basin. Mitochondrial DNA analysis indicated that both female bull trout and brook trout are involved in hybridization events. Analysis of population structure suggested that brook trout have established multiple spawning populations within the Malheur system. Data presented in this study suggest that relative abundance of brook trout and habitat quality are important factors to consider when evaluating the threat of hybridization to bull trout populations.  相似文献   

11.
Migratory bull trout (Salvelinus confluentus) historically spawned in tributaries of the Clark Fork River, Montana and inhabited Lake Pend Oreille as subadult and adult fish. However, in 1952 Cabinet Gorge Dam was constructed without fish passage facilities disrupting the connectivity of this system. Since the construction of this dam, bull trout populations in upstream tributaries have been in decline. Each year adult bull trout return to the base of Cabinet Gorge Dam when most migratory bull trout begin their spawning migration. However, the origin of these fish is uncertain. We used eight microsatellite loci to compare bull trout collected at the base of Cabinet Gorge Dam to fish sampled from both above and further downstream from the dam. Our data indicate that Cabinet Gorge bull trout are most likely individuals that hatched in above-dam tributaries, reared in Lake Pend Oreille, and could not return to their natal tributaries to spawn. This suggests that the risk of outbreeding depression associated with passing adults over dams in the Clark Fork system is minimal compared to the potential genetic and demographic benefits to populations located above the dams.  相似文献   

12.
Two-year-old hatchery-reared progeny of inlet- and outlet spawning brown trout from Lake Tytifjorden were released at the mouth of the R. Imsa, south-western Norway. There were significant differences in migratory direction of juveniles between the two populations. After release, juvenile fish from the outlet river population moved against the current and ascended the R Imsa, while the inlet rivet fish tended to migrate with the water current to the sea. This differential response to water current in juveniles appears to be due to genetic differences between the populations, and parallels that found in their ancestors native environments.  相似文献   

13.
The status of pike-perch culture in Finland   总被引:2,自引:0,他引:2  
Pike-perch ( Stizostedion lucioperca (L.)) brood-fish are captured from natural populations just before and during spawning time. One to three spawning pairs are put together with an artificial nest in a net-cage. After spawning the eggs attached to the nest are transported to a hatchery 1 day before hatching begins. The production of newly hatched fry, 30 million in 1994, is used for fingerling production in ponds with natural food. The production of pike-perch fingerlings in Finland increased rapidly in the 1980s and reached 10 million fish in 1994. The fingerlings are stocked into lakes particularly in central Finland, where many lakes lost their native pike-perch populations in the 1960s. In some lakes pike-perch fingerling stockings have been profitable and new populations have been established. Experiments on intensive rearing of newly-hatched pike-perch fry have not been successful. However, one-summer-old pond-reared pike-perch fingerlings are being reared intensively to provide captive brood fish.  相似文献   

14.
Growth and maximum size of stream fishes can be highly variable across populations. For salmonid fishes in streams, individuals from populations confined to headwater streams often exhibit small size at maturity in comparison to populations with access to main-stem rivers. Differences in prey size, prey availability, and metabolic constraints based on temperature may explain patterns of maximum size and growth. In this study, cutthroat trout from headwater stream populations that were isolated above a waterfall were compared to individuals from populations in similar sized streams without a movement barrier and from large main-stem rivers. Cutthroat trout from smaller streams with or without a movement barrier were significantly smaller at a given age than fish from main-stem rivers, where individuals were able to achieve a much larger maximum size. Comparisons of invertebrate drift abundance and size in the three types of streams revealed that drift size did not differ between stream categories, but was highest per volume of water in large main-stem rivers. Across all stream types, prey abundance declined from summer to fall. Temperature declined over the course of the season in a similar manner across all stream types, but remained relatively high later in the season in main-stem river habitats. Prey availability and temperature conditions in main-stem rivers may provide more optimal growing conditions for fish as individuals increase in size and become constrained by prey availability and temperature conditions in small streams. Maintaining connectivity between small spawning and rearing tributary streams and main-stem river habitats may be critical in maintaining large-bodied populations of stream salmonids.  相似文献   

15.
Limestone applications to the catchment of one tributary to Woods Lake were highly effective in reducing stream acidity and stabilizing seasonal fluctuations in pH. The resulting improvement in stream water quality also led to a dramatic shift in reproductive strategy of the Woods Lake brook trout population. Prior to catchment liming, brook trout in Woods Lake were restricted to spawning on poor quality near shore substrate with limited ground water seepage. Reproductive success was limited by high mortality of eggs and larvae and recruitment from in lake spawning was not successful. Spawning brook trout did not utilize the tributary for spawning prior to watershed liming. Mitigation of acidity in the tributary, by catchment liming, effectively extended the spawning habitat available to the Woods Lake brook trout population and one year following treatment brook trout spawned successfully in the tributary for the first time in 6 years of observation. Significant recruitment of young trout into the lake population occurred from 1991 through 1993, although the absolute number of fish captured was relatively small. In the fall of 1993, four year classes of naturally spawned brook trout were present in the lake. Although reproductive success was enhanced by improving tributary spawning habitat in the Woods Lake basin, self maintenance of the population may be limited by low recruitment rates of young trout, due to high levels of summer mortality resulting from predation. Mitigation of this constraint would require substantially higher levels of fry production than were observed in Woods Lake and/or enhanced refugia for young trout. The results of this experiment suggest that re-establishment of tributary spawning populations of brook trout may be possible, with future reductions in acidic deposition, in acidic Adirondack lakes with limited in-lake spawning habitat.  相似文献   

16.
 Movement by the larger more mobile species of coral reef fish plays a significant role in determining patterns in abundance and population structure. Fish movement is also relevant to the use and effectiveness of marine reserves in managing fish populations. Coral trout are large piscivorous serranids supporting major fisheries on the Great Barrier Reef (GBR). This study reports on the within-reef movement of the common coral trout, Plectropomus leopardus, at Heron Reef, southern GBR, over a twelve month period, investigated by tagging and underwater tracking. Tracking of coral trout revealed no apparent relationship between the area moved and stage of tide or time of day. However, movement areas were affected by the size of fish: in spring a linear relationship between fish size and area of movement was measured, but in summer the largest (male) fish moved over significantly smaller areas than medium-sized fish. Movement of males may be related to cleaning behaviour and spawning. Fifty nine percent (n=101) of the tagged fish were resighted over periods of 4–5 months, in “home sites” measuring ∼2000 m2. Coral trout were not restricted to home sites, but moved on average 2 km along the reef slope; maximum distances of 7–7.5 km were measured. Coral trout appear to range as mobile, opportunistic predators, but also maintain home sites for access to shelter and cleaning stations. Accepted: 1 August 1996  相似文献   

17.
From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5-6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations.  相似文献   

18.
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community‐level phase shifts from coral‐ to algal‐dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No‐take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio‐economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post‐disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post‐disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional‐scale population persistence and recovery.  相似文献   

19.
SUMMARY. .1. Ireland's fauna and flora are, compared with those of Britain and Continental Europe, relatively impoverished as a consequence of our glacial history. Salmonids are, however, well represented here and, because cyprinids are not. they make up a large proportion of the freshwater fish biomass. 2. It may be more accurate to regard our trout fauna as a mosaic of subspecies and races rather than a single species. Two principal immigrations are thought to have contributed to the extant strains one of which includes the valuable long-lived sea trout and freshwater ferox. Their fidelity to specific spawning areas isolates and maintains the purity of trout strains but certain aspects of spawning behaviour may leave some of them susceptible to cross fertilization with others. 3. Strains of trout may take distinguishable external forms or they may not be easily recognized by eye. In spite of their great interest in the conservation and management of trout, anglers are largely unaware of their genetic status. 4. Artificial restocking of salmonids has been carried out in Ireland since the nineteenth century; most effort has been expended on Atlantic salmon but, in the last 25 years, the restoration of trout populations depleted by pollution and arterial drainage has been the object of these exercises. There is concern for the consequences of wild trout strains being diluted by these efforts although, to date, evidence to support that happening is sparse. 5. Problems associated with deterioration in water quality have multiplied over the past 20 years and trout is the species most affected by fish kills. These tend to be seasonal, exacerbated by low water and dry weather. The smallest streams, which may be as narrow as 30 cm, which are the stronghold of trout in many catchments, are at greatest risk. 6. Ireland's cyprinid fauna results from introductions but it is rapidly developing - as is coarse angling. Roach is the species spreading fastest. Studies show that roach will share the diet of trout and. possibly more significant, will compete with them for the angler's fly.  相似文献   

20.
The production of all-female populations has important economic benefits in commercial rainbow trout aquaculture. The procedure commonly implemented to produce all-female stocks centers on the sex reversal of rainbow trout females via the administration of androgens in the early developmental stages, followed by the egg fertilization of normal females with semen from sex-reversed females (srf). However, there is no information regarding the quality of semen from srf rainbow trout throughout the spawning season. This information is critical because the quality of srf semen is highly variable. The aim of the study was to determine the changes in the semen parameters of srf rainbow trout throughout the duration of the spawning season. Sperm concentration, sperm motility parameters, and the biochemical parameters of seminal plasma (protein concentration, antitrypsin activity, osmolality, and lactate dehydrogenase activity) from srf were monitored during the spawning season and compared with normal male rainbow trout. The observed values of sperm, protein concentration, antitrypsin activity, osmolality, and lactate dehydrogenase activity of seminal plasma were all higher in comparison with normal males. Semen from srf was therefore characterized by a lower sperm motility during each period of the spawning season, in comparison with normal males, approximately 1.8, 1.5, and 1.7 times, respectively for the beginning, middle, and end of the spawning season. The percentage of sperm motility from srf and normal males were affected by the spawning season in the same way, as the highest values in the middle of the spawning season demonstrate (60% and 91% for srf and normal males, respectively). Spermatozoa of srf are characterized by a lower speed and a more curvilinear trajectory of movement as compared with that of normal males. The patterns of changes during the spawning season in sperm concentration, sperm motility parameters, as well as osmolality, and lactate dehydrogenase activity of the seminal plasma of srf were different in comparison with normal males. Our results could be important for fish breeders in regard to the spawning control of srf rainbow trout, as well as for the development of short- and long-term sperm storage procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号