首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prss16 is not required for T-cell development   总被引:1,自引:0,他引:1  
PRSS16 is a serine protease expressed exclusively in cortical thymic epithelial cells (cTEC) of the thymus, suggesting that it plays a role in the processing of peptide antigens during the positive selection of T cells. Moreover, the human PRSS16 gene is encoded in a region near the class I major histocompatibility complex (MHC) that has been linked to type 1 diabetes mellitus susceptibility. The mouse orthologue Prss16 is conserved in genetic structure, sequence, and pattern of expression. To study the role of Prss16 in thymic development, we generated a deletion mutant of Prss16 and characterized T-lymphocyte populations and MHC class II expression on cortical thymic epithelial cells. Prss16-deficient mice develop normally, are fertile, and show normal thymic morphology, cellularity, and anatomy. The total numbers and frequencies of thymocytes and splenic T-cell populations did not differ from those of wild-type controls. Surface expression of MHC class II on cTEC was also similar in homozygous mutant and wild-type animals, and invariant chain degradation was not impaired by deletion of Prss16. These findings suggest that Prss16 is not required for quantitatively normal T-cell development.  相似文献   

2.
Epithelial cells at environmental interfaces provide protection from potentially harmful agents, including pathogens. In addition to serving as a physical barrier and producing soluble mediators of immunity, such as cytokines or antimicrobial peptides, these cells are thought to function as nonprofessional APCs. In this regard, intestinal epithelial cells are particularly prominent because they express MHC class II molecules at the site of massive antigenic exposure. However, unlike bone marrow-derived professional APC, such as dendritic cells or B cells, little is known about the mechanisms of MHC class II presentation by the nonprofessional APC in vivo. The former use the lysosomal cysteine protease cathepsin S (Cat S), whereas thymic cortical epithelial cells use cathepsin L (Cat L) for invariant chain degradation and MHC class II maturation. Unexpectedly, we found that murine Cat S plays a critical role in invariant chain degradation in intestinal epithelial cells. Furthermore, we report that nonprofessional APC present a class II-bound endogenous peptide to naive CD4 T cells in vivo in a Cat S-dependent fashion. These results suggest that in vivo, both professional and nonprofessional MHC class II-expressing APC use Cat S, but not Cat L, for MHC class II-mediated Ag presentation.  相似文献   

3.
Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited.  相似文献   

4.
5.
H2-O/HLA-DO are MHC class II accessory molecules that modulate exogenous Ag presentation. Most class II accessory molecules are expressed in all professional APC; however, H2-O is only expressed in B cells and medullary thymic epithelial cells. Because B cells present exogenous Ags and superantigens (SAgs), and medullary thymic epithelial cells are specialized APC for self Ags during negative selection in the thymus, we have hypothesized that H2-O might play a role in MHC class II-restricted SAg and self Ag presentation. In this study, we demonstrate that H2-O expression inhibits presentation of the bacterial SAgs staphylococcal enterotoxins A and B to four SAg-reactive T hybridoma cells. In contrast, H2-O has no effect on presentation of endogenous self Ags, as measured by tumorigenicity in vivo and Ag presentation to three self Ag-specific T hybridoma cells. Additional experiments suggest that H2-O inhibits presentation of exogenous Ags by both newly synthesized and recycling MHC class II molecules. These data suggest H2-O may have a physiological role in tolerance induction and SAg-mediated toxic shock.  相似文献   

6.
Some MHC class II genes provide dominant resistance to certain autoimmune diseases via mechanisms that remain unclear. We have shown that thymocytes bearing a highly diabetogenic, I-Ag7-restricted beta-cell-reactive TCR (4.1-TCR) undergo negative selection in diabetes-resistant H-2g7/x mice by engaging several different antidiabetogenic MHC class II molecules on thymic (but not peripheral) hemopoietic cells, independently of endogenous superantigens. Here we have investigated 1) whether this TCR can also engage protective MHC class II molecules (I-Ab) on cortical thymic epithelial cells in the absence of diabetogenic (I-Ag7) molecules, and 2) whether deletion of 4.1-CD4+ thymocytes in I-Ab-expressing mice might result from the ability of I-Ab molecules to present the target beta-cell autoantigen of the 4.1-TCR. We show that, unlike I-Ag7 molecules, I-Ab molecules can restrict neither the positive selection of 4.1-CD4+ thymocytes in the thymic cortex nor the presentation of their target autoantigen in the periphery. Deletion of 4.1-CD4+ thymocytes by I-Ab molecules in the thymic medulla, however, is a peptide-specific process, since it can be triggered by hemopoietic cells expressing heterogeneous peptide/I-Ab complexes, but not by hemopoietic cells expressing single peptide/I-Ab complexes. Thus, unlike MHC-autoreactive or alloreactive TCRs, which can engage deleting MHC molecules in the thymic cortex, thymic medulla, and peripheral APCs, the 4.1-TCR can only engage deleting MHC molecules (I-Ab) in the thymic medulla. We therefore conclude that this form of MHC-induced protection from diabetes is based on the presentation of an anatomically restricted, nonautoantigenic peptide to highly diabetogenic thymocytes.  相似文献   

7.
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.  相似文献   

8.
Nedjic J  Aichinger M  Klein L 《Autophagy》2008,4(8):1090-1092
During T cell development in the thymus, scanning of peptide/major histocompatibility (MHC) molecule complexes on the surface of thymic epithelial cells ensures that only useful (self-MHC restricted) and harmless (self-tolerant) thymocytes survive. In recent years, a number of distinct cell-biological features of thymic epithelial cells have been unraveled that may have evolved to render these cells particularly suited for T cell selection, e.g., cortical epithelial cells use unique proteolytic enzymes for the generation of MHC/peptide complexes, whereas medullary epithelial cells "promiscuously" express otherwise tissue-restricted self-antigens. We recently showed that macroautophagy in thymic epithelial cells contributes to CD4 T cell selection and is essential for the generation of a self-tolerant T cell repertoire. We propose that the unusually high constitutive levels of autophagy in thymic epithelial cells deliver endogenous proteins to MHC class II molecules for both positive and negative selection of developing thymocytes.  相似文献   

9.
Dendritic cells (DC) undergo complex developmental changes during maturation. The MHC class II (MHC II) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC II chaperone Ii, and hence in the formation of MHC II-peptide complexes. We show that CyC is differentially expressed by mouse DC populations. CD8(+) DC, but not CD4(+) or CD4(-)CD8(-) DC, synthesize CyC, which accumulates in MHC II(+)Lamp(+) compartments. However, Ii processing and MHC II peptide loading proceeded similarly in all three DC populations. We then analyzed MHC II localization and Ag presentation in CD8(+) DC, bone marrow-derived DC, and spleen-derived DC lines, from CyC-deficient mice. The absence of CyC did not affect the expression, the subcellular distribution, or the formation of peptide-loaded MHC II complexes in any of these DC types, nor the efficiency of presentation of exogenous Ags. Therefore, CyC is neither necessary nor sufficient to control MHC II expression and Ag presentation in DC. Our results also show that CyC expression can differ markedly between closely related cell types, suggesting the existence of hitherto unrecognized mechanisms of control of CyC expression.  相似文献   

10.
11.
The p41 splice variant of major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains a 65 aa segment that binds to the active site of cathepsin L (CatL), a lysosomal cysteine protease involved in MHC class II-restricted antigen presentation. This segment is absent from the predominant form of Ii, p31. Here we document the in vivo significance of the p41-CatL interaction. By biochemical means and electron microscopy, we demonstrate that the levels of active CatL are strongly reduced in bone marrow-derived antigen-presenting cells that lack p41. This defect mainly concerns the mature two-chain forms of CatL, which depend on p41 to be expressed at wild-type levels. Indeed, pulse-chase analysis suggests that these mature forms of CatL are degraded by endocytic proteases when p41 is absent. We conclude that p41 is required for activity of CatL by stabilizing the mature forms of the enzyme. This suggests that p41 is not merely an inhibitor of CatL enzymatic activity, but serves as a chaperone to help maintain a pool of mature enzyme in late-endocytic compartments of antigen-presenting cells.  相似文献   

12.
We have used a T-T hybridoma, RF33.70, to detect the MHC class I-restricted presentation of exogenous native OVA by thymic APC in vitro. Presentation of OVA with class I molecules by thymic APC requires intracellular processing. Phenotypic analyses indicated that low bouyant density, MHC class II+, FcR+ cells are capable of using this presentation pathway. In order to determine whether thymic APC have this function in vivo, thymic APC were isolated from mice after i.v. injection of native OVA. We find that OVA is presented in association with MHC class I, but not class II, molecules in the thymus. This is in contrast to splenic APC, which present exogenous OVA with both class I and class II molecules under these conditions. Our findings have implications for the repertoire of self-peptides that might be presented by thymic APC to developing T lymphocytes.  相似文献   

13.
Antigen presentation by MHC class II molecules requires cysteine proteases (CP) for two convergent proteolytic processes: stepwise degradation of the invariant chain (Ii) and generation of immunogenic peptides. Their activity is controlled by intracellular CP inhibitors, including presumably the p41 isoform of invariant chain (p41 Ii), which is in vitro a potent inhibitor of cathepsin L but not of cathepsin S. In order to evaluate the inhibitory potential of p41 Ii in antigen-presenting cells (APC), these three proteins were stained in lymph node tissue using specific monoclonal and polyclonal antibodies. The most abundant labelling was observed in subcapsular (cortical) and trabecular sinuses of the lymph node. In this area the most frequent APC were macrophages, as confirmed by the CD68 cell marker. Using confocal fluorescence microscopy, co-localisation of p41 Ii with cathepsin S, but not with cathepsin L was found in these cells. Our results are consistent with the hypothesis that cathepsin S participates in degradation of the invariant chain, but they do not support the association between cathepsin L and p41 Ii in APC.  相似文献   

14.
To establish new tools for studying human thymic stromal cells, we transfected adherent cells from a human postnatal thymus using a plasmid encoding SV40 large T antigen. Among the cell lines obtained, we characterized four epithelial cell lines (LT-TEC1 to LT-TEC4) and one thymic myoid cell line (MITC). Several morphological, functional and phenotypic differences were observed between these 2 cell types. Epithelial cells were heterogeneous and larger than myoid cells. Untreated LT-TEC lines expressed MHC class I, ICAM-1 and LFA-3 antigens and not MHC class II antigens, similarly to primary thymic epithelial cells (PTEC), while MITC line expressed only class I and LFA-3 antigens. After IFN-gamma treatment, MHC class II and ICAM-1 antigens were markedly upregulated in LT-TEC lines but not in MITC, indicating the absence or a dysfunction of regulatory factors in MITC line. Myoid cells expressed mRNA for all the subunits of the acetylcholine receptor (AChR) while epithelial cells expressed only the alpha, beta and epsilon subunits. Strikingly, LT-TEC produced much more C-C chemokines and IL-6 than MITC cells, while these latter produced higher levels of IL-8 and TNF-alpha. Altogether, these results reveal phenotypic and functional differences between these two stromal cell types, suggesting a potential involvement of myoid cells in the thymic function.  相似文献   

15.
Analysis of class II MHC structure in thymic nurse cells   总被引:1,自引:0,他引:1  
  相似文献   

16.
Factors regulating stem cell recruitment to the fetal thymus   总被引:15,自引:0,他引:15  
Colonization of the thymic rudiment during development is initiated before vascularization so that hemopoietic precursors must leave the pharyngeal vessels and migrate through the perithymic mesenchyme to reach the thymus, suggesting that they may be responding to a gradient of chemoattractant factors. We report that diffusible chemoattractants are produced by MHC class II+ epithelial cells of the fetal thymus, and that the response of precursors to these factors is mediated via a G protein-coupled receptor, consistent with factors being members of the chemokine family. Indeed, a number of chemokine receptors are expressed by thymic precursors, and several chemokines are also expressed by thymic epithelial cells. However, these chemokines are also expressed in a tissue that is unable to attract precursors, although the thymus expressed chemokine, TECK, is expressed at higher levels in thymic epithelial cells and we show that it has chemotactic activity for isolated thymic precursors. Neutralizing Ab to TECK, however, did not prevent thymus recolonization by T cell precursors, suggesting that other novel chemokines might be involved in this process. In addition, we provide evidence for the involvement of matrix metalloproteinases in chemoattractant-mediated T cell precursor recruitment to the thymus during embryogenesis.  相似文献   

17.
Positive selection of CD4+ T cells requires that the TCR of a developing thymocyte interact with self MHC class II molecules on thymic cortical epithelium. In contrast, clonal deletion is mediated by dendritic cells and medullary epithelium. We previously generated K14 mice expressing MHC class II only on thymic cortical epithelium. K14 CD4+ T cells were positively, but not negatively, selected and had significant in vitro autoreactivity. Here, we examine the function of these autoreactive CD4+ T cells in more detail. Analysis of a series of K14-derived T hybrids demonstrated that the autoreactive population of CD4+ T cells is phenotypically and functionally diverse. Purified K14 CD4+ T cells transferred into lethally irradiated wild-type B6 mice cause acute graft vs host disease with bone marrow failure. Further, these autoreactive CD4+ T cells cause hypergammaglobulinemia and the production of autoantibodies when transferred into unirradiated wild-type hosts. Thus, positive selection by normal thymic cortical epithelial cells, unopposed by negative selection, produces polyclonal CD4+ T cells that are pathologic.  相似文献   

18.
The epithelium of the human oviduct expresses the major histocompatibility complex (MHC) class II and shows endocytic properties towards luminal antigens. Therefore, the epithelial cells might behave as antigen-presenting cells, inducing a local immune response. The activation of antigen-specific T cells not only requires presentation of the peptide antigen by MHC class II, but also the presence of co-stimulatory molecules in the antigen-presenting cells. Therefore, the expression of the intercellular adhesion molecule 1 (ICAM-1) was examined in the epithelium of the human oviduct. Most oviducts showed epithelial ICAM-1 expression, as assessed by immunocytochemistry, western blot analysis and RT-PCR assay, and the expression was restricted to the luminal border of ciliated and secretory cells. Interferon gamma, interleukin 1 and lipopolysaccharide treatments increased the percentage of ICAM-1-positive cells in primary cultures, indicating that the expression of ICAM-1 in the oviduct might be upregulated in vivo by inflammatory cytokines or bacterial infections. Binding assays between allogenic phytohaemagglutinin-activated lymphocytes and epithelial monolayers expressing ICAM-1 demonstrated that this molecule stimulated lymphocyte adherence. The presence of ICAM-1, in addition to MHC class II, supports the putative role of the oviductal epithelium in antigen presentation. The exclusive apical distribution of ICAM-1 indicates that T-cell activation would occur in a polarized manner. Binding of lymphoid cells to the surface of the oviductal epithelium may help to retain these immune cells that are required for the clearance of pathogens.  相似文献   

19.
Nonlymphoid, stromal cells in the mouse thymus are believed to be important in T cell maturation and have been proposed to play a central role in the acquisition of major histocompatibility complex (MHC) restriction and self-tolerance by maturing thymocytes. Both cortical and medullary epithelial cells in the thymus express high levels of class II (A) major histocompatibility antigens (MHC Ags). We show here that a specific subset of these A epithelial cells express a transformation-associated antigen (6C3Ag) found previously on the surfaces of Abelson murine leukemia virus-transformed pre-B cells and on those bone marrow-derived stromal cell clones which support normal and preneoplastic pre-B cell proliferation. Among solid lymphoid organs, only the thymus contains 6C3Ag1 cells and within the thymus, this antigen is found exclusively on A epithelial cells in cortical regions. It is striking that the expression of the 6C3Ag on thymic epithelium is developmentally regulated, suggesting a role for this lymphostromal antigen in the maturation of the thymic microenvironment.  相似文献   

20.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号