首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of carbonic anhydrase (CA) activity in Peridinium gatunense Nygaard, the natural bloom-forming dinoflagellate in Lake Kinneret, to diel and seasonal variations in environmental conditions was characterized under controlled laboratory experiments. Simulated diel cycles demonstrated large changes in the ambient concentration of dissolved CO2 and parallel changes in CA activity. The CA activity depended on the total concentrations of inorganic carbon (C1) and in particular on the dissolved CO2. Lowering the C1 concentrations resulted in a large increase in CA activity within several hours. Light and photosynthesis were both required for the induction of CA activity. Under CO2 -limited conditions, the dependence of the photosynthetic rate on CA (estimated from the ratio of photosynthetic rates in the presence or absence of CA inhibitors) was greater in P. gatunense than in other eukaryotic microalgae. This points to the ecological significance of CA in photosynthetic carbon uptake mechanisms of a large, dominant alga in a natural ecosystem .  相似文献   

2.
Abstract. Mass spectrometry has been used to measure the rates of CO2 uptake of acid- and alkali-grown cells of the green algae Chlorella ellipsoidea (UTEX 20) and C. saccharophila (UTEX 27). The time course of CO2 formation on addition of 100mmol m−3 K2CO3 to cells in the dark was used as an assay for external carbonic anhydrase (CA). No external CA was detected in acid-grown cells of either species or in alkali-grown cells of C. ellipsoidea but was present in alkali-grown C. saccharophila . In the absence of external CA, or when it was inhibited by 5mmol m−3 acetazolamide, cells of both species, on illumination, rapidly depleted the free CO2 in the medium at pH 7.5 to near zero concentrations before maximum photosynthetic O2 evolution rates were established. Addition of bovine CA rapidly restored the equilibrium CO2 concentration in the medium, indicating that the cells were selectively taking up CO2. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium largely due to the efflux of inorganic carbon from the cells as CO2. This rapid light-dependent CO2 uptake takes place against pH and concentration gradients and, thus, has the characteristics of active transport.  相似文献   

3.
Different isoenzymes of carbonic anhydrase (CA; EC 4.2.1.1) have been separated using thalli of the red macroalga Porphyra leucosticta Thuret in Le Jolis. Homogenates of the thallus were centrifuged in order to separate soluble and membrane proteins. The fraction containing membrane proteins was subdivided by centrifuging into two fractions: green and nongreen membrane proteins. CA activity was detected in all the fractions. Because external CA (measured on intact thallus) represented 15% of total activity, it was concluded that most of the CA (ca. 80%) was soluble and internal. Direct evidence regarding the different function of external and internal CA was obtained by determining the effects on photosynthesis of two specific CA inhibitors with different capacity for entering cell. It was concluded that internal CA was necessary to 'trap' the CO2 entering the cell and thus maintain a favorable CO2 gradient that permits its diffusive entry. Changes in the O2 evolution rate at inorganic carbon ( C i) concentration saturating for photosynthesis and on the photosynthetic conductance for C i were found when external CA was inhibited. Based on these changes and the significant CA activity (ca. 9% of the total activity) found in nongreen membrane fraction, the presence of external CA associated with plasma membrane was postulated. The presence of CA associated with chloroplast membrane was also suggested.  相似文献   

4.
Carbonic anhydrases in higher plants and aquatic microorganisms   总被引:3,自引:1,他引:2  
At physiological pH-values CO2 and HCO3are the dominant inorganic carbon species and the interconversion between both is catalyzed by carbonic anhydrase (EC 4.2.1.1). This enzyme is widely distributed among photosynthetic organisms. In the first part of the review, the similarities and the differences of carbonic anhydrases from plants and animals are briefly described. In the second part recent advances in molecular biology to understand the structure of carbonic anhydrase from higher terrestrial plants as well as its involvement in photosynthetic CO2 fixation are summarized. Lastly, the review deals with the presence of carbonic anhydrase in aquatic organisms including cyanobacteria, microalgae, macroalgae and angiosperms. Evidence for the presence of extracellular and intracellular isozymes in these organisms are discussed. The properties and function(s) of carbonic anhydrase during the operation of the inorganic carbon concentrating mechanism are also described.  相似文献   

5.
The effects of the carbonic anhydrase (CA) inhibitors acetazolamide (AZ) and dextran-bound sulfonamide (DBS) on HCO3-dependent O2 evolution in Chlorella saccharophila were evaluated. Addition of 4 μ M AZ or 0.4 mg ml−1 DBS to photosynthesizing cells reduced the O2 evolution rate at low dissolved inorganic carbon (DIC) concentration, decreased the size of the intracellular acid-labile carbon pool, and decreased the apparent affinity of the cells for DIC. Measurement of the whole-cell affinity of cells for CO2 and HCO3 in the presence and absence of inhibitors indicated that active HCO3 transport was inhibited by AZ and DBS. The inhibition of HCO3 transport was independent of the inhibition of external and internal CA. These results suggest that the active uptake of HCO3 occurs initially by the interaction of HCO3 and a CA-like transporter.  相似文献   

6.
Over the past 10 years it has become clear that cyanobacteria and microalgae possess mechanisms for actively acquiring inorganic carbon from the external medium and are able to use this to elevate the CO2 concentration around the active site of the primary photosynthetic carboxylating enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). This results in a vastly enhanced photosynthetic affinity for inorganic carbon (Ci) and improved photosynthetic efficiency. The CO2 concentrating mechanism is dependent on the existence of membrane bound Ci transport systems, and a microenvironment within the cell where the accumulated Ci can be used to elevate CO2 at the site of Rubisco. Evidence presented in this review suggests that in cyanobacteria this is achieved by the packaging of Rubisco and carbonic anhydrase (CA) into discrete structures, which are termed carboxysomes. Analogous structures in microalgae, termed pyrenoids, may perform a similar function. The recovery and analysis of high-CO2-requiring mutants has greatly advanced our understanding of the mechanisms and genes underlying these systems, especially in cyanobacteria, and this review places particular emphasis on the contribution made by molecular genetic approaches.  相似文献   

7.
Changes in photosynthetic capacity of the seaweed Gracilaria tenuistipitata Zhang et Xia acclimated to monochromatic blue light were studied. For this purpose, affinity for external inorganic carbon, light use efficiency, carbonic anhydrase (CA; EC 4.2.1.1) activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were determined in thalli acclimated to 45 µmol m−2 s−1 of blue light. Thalli cultured in white light of the same photon fluence rate were used as a control. Lower maximal photosynthetic rates (i.e. at light and carbon saturation) were obtained in the thalli cultured in blue light. Apparently, this lower photosynthetic capacity was not due to differences in affinity and/or capacity for use of external dissolved inorganic carbon (DIC) since (1) CA activity did not change significantly and (2) similar values of photosynthetic conductance for DIC at alkaline pH were obtained (0.95 × 10−6 m s−1). In addition, the pool size of Rubisco was not modified by the blue light treatment since there were no significant differences in Rubisco content between white (12.14% of soluble proteins) and blue light (12.13% of soluble proteins) treatments. In contrast, F v/ F m was increased by 11% and photosynthetic efficiency for oxygen production was reduced by 50% in blue light. This absence of correlation between quantum yields for maximum stable charge separation of photosystem II and oxygen evolution suggests that blue light promote changes in rates of photosynthetic electron flow.  相似文献   

8.
A range of marine photosynthetic picoeukaryote phytoplankton species grown in culture were screened for the presence of extracellular carbonic anhydrase (CAext), a key enzyme in inorganic carbon acquisition under carbon- limiting conditions in some larger marine phytoplankton species. Of the species tested, extracellular carbonic anhydrase was detected only in Micromonas pusilla Butcher. The rapid, light-dependent development of CAext when cells were transferred from carbon-replete to carbon-limiting conditions was regulated by the available free- CO2 concentration and not by total dissolved inorganic carbon. Kinetic studies provided support for a CO2- concentrating mechanism in that the K 0.5[CO2] (i.e. the CO2 concentration required for the half-maximal rate of photosynthesis) was substantially lower than the K m[CO2] of Rubisco from related taxa, whilst the intracellular carbon pool was at least seven fold greater than the extracellular DIC concentration, for extracellular DIC values 1.0 m m .
It is proposed that when the flux of CO2 into the cell is insufficient to support the photosynthetic rate at an optimum photon irradiance, the development of CAext increases the availability of CO2 at the plasma membrane. This ensures rapid acclimation to environmental change and provides an explanation for the central role of M. pusilla as a carbon sink in oligotrophic environments.  相似文献   

9.
Abstract A diatom biofilm was grown in a chamber developed for culture of biofilms in chemical gradients. The diatoms grew on a polycarbonate membrane filter which separated a sterile reservoir, with added phosphate, from a reservoir without phosphate. Within 3 weeks of inoculation, a thick biofilm developed on the surface of the filter. The biofilms were homogeneous and therefore suitable for calculations of O2 diffusion fluxes from concentration profiles of O2. Profiles of O2, pH, and gross photosynthesis at different light intensities and liquid medium concentrations of dissolved inorganic carbon and O2 were measured with microelectrodes. Respiratory activity in a layer of the biofilm was determined as the difference between gross photosynthesis and outflux of O2 from that layer. The photosynthetic activity in a well-developed biofilm grown at 360 μEinst m−2 s−1 and 2.4 mM HCO3 was limited by the supply of inorganic carbon. Exposure to light above 360 μEinst m−2 s−1 stimulated gross photosynthesis as well as respiratory processes without affecting net outflux of O2. Higher concentrations of inorganic carbon, on the other hand, enhanced gross photosynthesis without concurrent increase in respiratory rate, resulting in an increased outflux of O2. High concentrations of O2 in the liquid medium decreased the net outflux of O2 with little effect on the gross photosynthesis. The effects of inorganic carbon and O2 on the metabolic activities of the biofilm were consistent with the presence of photorespiratory activity.  相似文献   

10.
The case for chloroplast thylakoid carbonic anhydrase   总被引:8,自引:0,他引:8  
Washed thylakoid membranes and photosystem II-enriched membrane fragments from cyanobacteria, green algae, and chloroplasts from both C3 and C4 plants possess the ability to reversibly hydrate CO2. That is, the membranes have an intrinsic carbonic anhydrase activity. The present review outlines the discovery of thylakoid carbonic anhydrase and presents the evidence that it is a unique isozyme, distinct from other cellular carbonic anhydrases. It appears that at least some thylakoid carbonic anhydrase is closely associated with photosystem II and may be required for electron transport. This would explain why all inhibitors of carbonic anhydrase also inhibit photosystem II. Several speculative functions of thylakoid carbonic anhydrase are discussed. These include a possible role in carbon metabolism, in the protonation of plastoquinone, and/or in oxygen evolution.  相似文献   

11.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

12.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

13.
Abstract. The common marine macroalga Ulva was found to have a surface pH of about 10 during photosynthesis. Under such a condition, the equilibrium CO2 concentration within the unstirred layer would be below reported CO2 compensation points, and dehydration of HCO3 could not occur. Even at a compensation point approaching zero, uncatalysed rates of HCO3 to CO2 conversion within the unstirred layer volume could not support photosynthetic rates as measured under stirred conditions in the presence of a carbonic anhydrase inhibitor. Based on this, it is concluded that Ulva takes up HCO3. It is likely that HCO3 uptake leads to high internal CO2 levels which, in turn, suppress photorespiration and thus cause this plant's efficient gas exchange features. Carbonic anhydrase activity was measurable only in plant extracts. However, inhibitor studies suggest the presence of a surface enzyme. The possible functions of extracellular carbonic anhydrase in Ulva are assessed in terms of CO2 hydration during emergence and a possible HCO3, transport system.  相似文献   

14.
In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O2 production by excised aquatic roots, when underwater, was measured with varying light and CO2 regimes; the apparent maximum capacity ( P max) for underwater net photosynthesis in aquatic roots was 0.45  µ mol O2 m−2 s−1. The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O2, and potentially carbohydrates, in flooded and submerged plants.  相似文献   

15.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

16.
The effects of short-term NaCl-salinity on nodules of soybean ( Glycine max L. cv. Kingsoy) were studied on hydroponically-grown plants. Both acetylene reducing activity (ARA) and nodule respiration (O2 uptake and CO2 evolution) were immediately inhibited, and the stimulation of them by rising the external partial pressure of O2 (pO2) was diminished by the application of 0.1 M NaCl in the nutrient solution. The permeability of the nodule to O2 diffusion, estimated by O2 consumption or CO2 evolution, was significantly lower in the stressed nodules than in the cootrol ones. The respiratory quotient of intact nodules and the ethanol production of excised nodules were increased by low pO2 and by salt stress. These data confirm that in salt-stressed soybean nodules, O2 availability is reduced and fermentative pathways are stimulated.  相似文献   

17.
Measurements of photosynthesis and respiration in plants   总被引:6,自引:1,他引:5  
Hunt S 《Physiologia plantarum》2003,117(3):314-325
Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts.  相似文献   

18.
The long-term role of photorespiration was investigated by comparing growth, development, gas exchange characteristics and mineral nutrition of a wheat crop ( Triticum aestivum L. cv. Courtot) cultivated in a culture chamber during a life cycle, either in 4% O2 or in normal O2 Low O2 pressure reduced photorespiration, but CO2 was controlled so that net photosynthesis remained the same as in the control crop. The growth and development of the low O2 crop was slowed down. Ear appearance was 16 days late, but the rate of tillering was the same as in the control and was maintained longer so that the final number of tillers was doubled. Pigment, ribulose bisphosphate carboxylase (EC 4.1.1.39) and soluble sugar contents were similar. The response of photosynthesis to CO2 and O2 was not appreciably changed by the low O2 treatment. There was almost no seed formation, and the senescence of the leaves was delayed. It appears that in non-stress conditions most of the photorespiration can be suppressed without damage to the photosynthetic apparatus. Retardation of development and inhibition of reproduction are likely due to other effects of O2.  相似文献   

19.
Bean ( Phaseolus vulgaris L. cv. Golden Saxa) plants were grown under low artificial light or under natural daylight. The rate of net photosynthesis (PN) was measured at: CO2 partial pressure, p(CO2), of 0.03, 0.09 or 0.15 kPa; O2 partial pressure, p(O2), of 2, 21 or 31 kPa and at light intensities of 350 or 1000 μmol m−2 s−1 (photosynthetically active radiation). In plants which had been grown under natural light, stimulation of PN at 21 kPa p(O2) was found only at elevated p(CO2) and high light. It is proposed that this phenomenon is dependent on a high capacity of the photosynthetic apparatus to regenerate ribulose 1.5-bisphosphate.  相似文献   

20.
Photosynthetic oxygen evolution within Sesbania rostrata stem nodules   总被引:1,自引:0,他引:1  
The tropical wetland legume, Sesbania rostrata Brem. forms N2-fixing nodules along its stem and on its roots after infection by Azorhizobium caulinodans . The N2-fixing tissue is surrounded by a cortex of uninfected cells which, in the stem nodules (but not the root nodules), contain chloroplasts. The photosynthetic competence of these chloroplasts was assessed through a novel technique involving image analysis of chlorophyll a fluorescence. Calculation of the quantum efficiency of photosystem II (PS II) photochemistry from these images indicated that most of the chloroplasts with potential for non-cyclic photosynthetic electron transport were concentrated within the mid- and inner-cortex, close to the edge of the N2-fixing tissue. PS II activity in the cortical cells was confirmed in vivo using O2-specific microelectrodes which showed that the concentration of O2 (pO2) in the outer cortex could rise from less than 1% up to 23.4% upon increased irradiance of the nodule, but that the pO2 of the inner cortex and infected tissue remained less than 0.0025%. Nitrogenase activity of stem nodules, as measured using a flow-through acetylene reduction assay (no H2 evolution was evident), showed a reversible increase of 28% upon exposure of the nodules to supplemental light. This increase resembled that obtained with stem nodules upon their exposure to an external pO2 of 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号