首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of deoxyribonucleoside 5′-triphosphate, resulting in deoxyribonucleoside 5′-monophosphate formation dependent on DNA synthesis, was observed in nuclei isolated from regenerating rat liver. The intensity of the hydrolysis in nuclei varied at different times after partial hepatectomy, showing its maximum at 48 h. The rates of DNA synthesis altered corresponding to the intensities of hydrolysis. Proportionality between decrease in DNA synthesis and decrease in dNMP production was also observed in nuclei treated with various inhibitors of DNA synthesis. The formation of dNMP was detected with the four DNA substrates, indicating no involvement of specific dNTPase. Although regenerating nuclei contained a nonspecific dNTPase activity that can cause release of dNMP, this activity was independent of DNA synthesis and not inhibited by inhibitors of DNA synthesis. These results indicated that regenerating liver nuclei had two different activities for dNMP production; one is DNA synthesis-dependent, and the other is a non-specific dNTPase activity. This paper has focused on the former activity.  相似文献   

2.
The role of endogenous regucalcin in the regulation of deoxyribonucleic acid (DNA) synthesis activity in the nuclei of regenerating rat liver after partial hepatectomy was investigated. The addition of regucalcin (0.25 and 0.5 microM) in the reaction mixture caused a significant decrease in the nuclear DNA synthesis activity of normal rat liver. This decrease was also seen in the presence of Ca2+-chelator EGTA (0.4 mM), indicating that the effect of regucalcin is not related to nuclear Ca2+. Nuclear DNA activity was significantly increased in the presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture. The effect was completely abolished by the addition of regucalcin (0.5 microM). Nuclear DNA synthesis activity was significantly increased at 24, 48, and 72 h after partial heptectomy. The effect of anti-regucalcin monoclonal antibody (25 ng/ml) in increasing nuclear DNA synthesis activity was significantly enhanced at 24 and 48 h after partial hepatectomy. The presence of staurospone (10(-6) M), trifluoperazine (2 x 10(-5) M), or PD98059 (10(-5) M) in the reaction mixture caused a significant decrease in DNA synthesis activity in the nuclei obtained at 24 after partial hepateactomy. The effect of these inhibitors in the presence of anti-regucalcin monoclonal antibody (25 ng/ml) was greater than that in the absence of the antibody. The present study suggests that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis activity in regenerating liver with cell proliferation after partial hepatectomy in rats.  相似文献   

3.
Setkov NA  Eremeev AV 《Tsitologiia》2001,43(6):567-574
Mouse liver regeneration after partial hepatectomy can be considered as a spectacular example of controlled tissue increase. In this study serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with primary hepatocytes isolated from normal (intact) and regenerating adult mouse liver at different times after partial hepatectomy (1-15 days) to elucidate mechanisms of liver cell proliferation cessation at the regeneration end. DNA synthesis was investigated in the nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes isolated from regenerating liver within 1-12 days following operation did not retard the entry of stimulated fibroblast nuclei into the S-period. In contrast, hepatocytes isolated within 15 days after hepatectomy were found to have inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period in heterokaryons. Preincubation of these hepatocytes with cyclocheximide for 2-4 h abolished their ability to suppress DNA synthesis in stimulated fibroblast nuclei in heterokaryons. Possible reasons of inhibitory effect of differentiated cells in heterokaryos are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in regenerating hepatocytes seems to be stopped being affected by the intracellular growth inhibitors, whose formation depends on protein synthesis.  相似文献   

4.
5.
Evidence from comparative determination of DNA radioactivity methylation degree of acidic extraction and chlorophormic deproteination of the samples suggest that the former technique is a more efficient one. The properties of the DNA-methylase reaction in isolated rat liver nuclei were studied. The DNA-methylase activity is found to be considerably stable during incubation of the nuclei at 37 degrees C; a broad pH-optimum in the alkaline region is observed (pH 8.6--9.8); this activity is inhibited by Mn2+, nucleotides, actynomycin and S-adenosyl methionine analogs and is activated by Mg2+; the incorporation of methyl groups into DNA is reversible. The data suggest that the DNA-methylase activities of the nuclei isolated at different stages of regeneration do not show substantial variations. No differences in DNA methylation before and after DNA synthesis in the regenerating nuclei were observed. Inhibition of DNA synthesis in the course of regeneration does not decrease the level of DNA methylation. The interrelationship between methylation and replication of DNA is discussed.  相似文献   

6.
The effect of 5% ethanol on DNA polymerase activity in nuclei, mitochondria, microsomes and cytosol of intact and regenerating liver of adult and old rats has been studied. No changes in DNA polymerase activity were detected in subcellular fractions of adult rat liver. On the contrary, the increased activity of intact liver nuclei and decreased activity of regenerating liver microsomes was observed with ageing. These age-dependent peculiarities of DNA polymerase activity in response to 5% ethanol may be related to changes in the enzyme molecules or microenvironment associated with ageing.  相似文献   

7.
The interaction of deoxyribonucleoside 5'-mono-, di- and triphosphates with human placenta DNA polymerase alpha was examined. Dissociation constants of enzyme complex formation with dNMP, dNDP and dNTP were determined from the data on enzyme affinity modification by imidazolide of dTMP. The basic role of the primary template-primer interaction with the enzyme in dNTP complex formation is shown. The template-dependent nucleotide interaction does not occur in the case of dNMP and dNDP in comparison with dNTP. The significant contribution of the gamma-phosphate of dNTP in this process is demonstrated.  相似文献   

8.
Reduction in the number of nucleoli/nucleus and increase in their size were usually observed in rat liver after partial hepatectomy. These changes of nucleoli were greatest 16–18 h after the operation, when RNA biosynthesis in the nucleoli is reported to be highest. Approx. 50% of the nuclei had one enlarged nucleolus at this time but after the increase in nuclear DNA synthesis less than 15% of the nuclei had one nucleolus, as in normal liver. Before the next peak of nuclear DNA synthesis, nucleolar changes appeared again, though less conspicuously.The enlarged nucleoli of regenerating liver were separated from smaller ones by discontinuous sucrose gradient centrifugation and the contents of nucleic acid and ribosomal cistrons in different-sized nucleoli were measured. The large nucleoli in regenerating liver were found to have increased DNA content, whereas smaller ones had the normal content. The total number of ribosomal cistrons in the enlarged nucleoli from regenerating liver was also increased roughly in proportion to the DNA content. No significant difference was found between the percentages of ribosomal cistrons in whole nuclear DNAs from regenerating and normal liver. Small but reproducible [3H]TdR incorporation into nucleolar DNA was observed and this was similar in normal liver and regenerating liver 12 h after partial hepatectomy. Therefore, the nucleolar changes in regenerating liver were not accompanied by any particular DNA synthesis in the nucleolus itself. These results suggest that in the nuclei of regenerating liver nucleolar chromatins may be redistributed and assembled into large nucleoli, rather than that any amplification of ribosomal cistrons occurs.  相似文献   

9.
It was demonstrated that neutral Mn-dependent DNAase from rat liver chromatin stimulates the incorporation of labeled precursors of DNA into high molecular weight fractions of isolated nuclear DNA. The effects of DNA-polymerase inhibitors and the properties of DNA synthesis products suggest that neutral Mn-dependent DNAase can induce replicative synthesis of DNA in the nuclei of normal and regenerating rat liver.  相似文献   

10.
Reaction of DNA synthesis catalyzed by DNA polymerase I KF in the presence of 2'-deoxynucleoside 5'-alpha-thiotriphosphates (dNTP alpha S) was investigated. DNA with thiophosphate groups (DNA[P=S]) obtained by such a way was studied in reactions of hydrolysis and pyrophosphorolysis catalyzed by DNA polymerase I KF. It is shown that the rate of DNA elongation is decreased both on the step of incorporation of dNMP alpha S residues and on the step of incorporation of the next dNMP residue. The rate of pyrophosphorolysis of 3'-terminal dNMP alpha S was demonstrated to be one order of magnitude less in comparison with the corresponding reaction with the natural dNMP residue. Contrary, the rate of 3'----5'-exonuclease hydrolysis of both DNA[P=S] and DNA of the same structure revealed no distinguishable differences.  相似文献   

11.
ADP-ribosylation of nuclear proteins, catalysed by the enzyme poly(ADP-ribose) polymerase, is involved in the regulation of different cellular processes of DNA metabolism. To further clarify the role of the enzyme during proliferating activity of mammalian cells, we have studied the control of gene expression in regenerating rat liver. The changes in activity and mRNA levels were analysed during the early and late phases of the compensatory model. When enzyme activity was measured in isolated liver nuclei obtained at different times after hepatectomy, two different phases were observed: an early wave occurring before the onset of DNA synthesis, and a second one, starting several hours after the onset of DNA synthesis and returning to control values at later times. The evaluation of the enzymatic level in nuclear extracts and by activity gel analysis showed a more gradual increase starting 1 day after hepatectomy, in concomitance with the peak of DNA synthesis. By using a specific murine cDNA probe, a significant enhancement of mRNA levels for poly(ADP-ribose) polymerase was observed during liver regeneration, slightly preceding the onset of DNA synthesis. The results obtained show that changes in poly(ADP-ribose) polymerase activity, during liver regeneration, are associated both to early events preceding the increase in DNA synthesis and to later phases of the cell proliferation process.  相似文献   

12.
The comparative analysis of DNA-synthetase activity of hepatocytes, isolated nuclei and nuclear matrix from normal and regenerating rat liver was performed. The highest enrichment with newly-synthesized DNA was registered in the DNA fraction associated with the nuclear matrix both in vivo and in vitro. The functioning of DNA polymerases alpha and beta in the matrix was shown. Our results indicate that DNA polymerase beta is more firmly bound with the nuclear matrix in the cells of normal liver but this enzyme is eluted almost completely from the nuclei of regenerating liver cells. At the first moment after gamma-irradiation of rats the preferential initiation of unscheduled DNA synthesis in vivo has been observed on the nuclear skeletal structures. This may serve as an indication on the possibility that DNA repair process occurs on the nuclear matrix.  相似文献   

13.
Nuclei were isolated from synchronized plasmodia of a true slime mold, Physarum polycephalum, in S-phase, and DNA synthesis in the nuclei was studied in vitro. The nuclei catalyzed DNA synthesis at the rate of 0.7 ng DNA/1.0 X 10(6) nuclei/30 min at 25 degrees C, which was 5 times higher than that catalyzed in G2-phase nuclei. The DNA synthesis required Mg2+, four kinds of deoxyribonucleoside 5'-triphosphates and ATP, suggesting that the mode of synthesis is a replicative-type, but not a repair-one. Sedimentation analysis of the DNA products revealed that the nuclei produced 2-4S DNA fragments mainly during a 30-sec pulse incubation, and 2-4S, 5-12S and longer fragments during a 15-min incubation. The pulse- and chase-labeling experiments showed that the 2-4S fragments shifted discontinuously to longer fragments. These results indicate that the nuclei catalyze the formation of 2-4S Okazaki fragments first and then their subsequent ligation. Eighty % and 96% of the DNA synthesis was inhibited by 200 micrograms/ml aphidicolin and 40 mM N-ethylmaleimide, respectively, but 80% of the activity was resistant to 100 microM 2',3'-dideoxythymidine 5'-triphosphate. These results suggest that the DNA synthesis is catalyzed by the alpha-type DNA polymerase of Physarum polycephalum.  相似文献   

14.
SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication.  相似文献   

15.
The role of endogenous regucalcin in the regulation of ribonucleic acid (RNA) synthesis activity in the nucleus of normal and regenerating rat livers was investigated. Nuclear RNA synthesis was measured by the incorporation of [(3)H]-uridine 5'-triphosphate into the nuclear RNA in vitro. The presence of regucalcin (0.25 or 0.5 microM) in the reaction mixture caused a significant decrease in nuclear RNA synthesis of normal rat liver. alpha-Amanitin (10(-8)-10(-6) M), an inhibitor of RNA polymerase II and III, decreased significantly nuclear RNA synthesis activity. The effect of regucalcin (0.25 microM) in decreasing nuclear RNA synthesis activity was not seen in the presence of alpha-amanitin (10(-6) M). The calcium chloride (10 microM)-increased nuclear RNA synthesis activity was significantly suppressed by the addition of regucalcin (0.25 microM). RNA synthesis activity was significantly enhanced in the nuclei of regenating rat liver obtained at 24, 48, or 72 h after partial hepatectomy. This enhancement was significantly inhibited in the presence of PD98059 (10(-5) M), staurosporine (10(-6) M), or vanadate (10(-3) M). Western analysis of the nuclei of regenerating liver obtained at 24, 48, or 72 h after partial hepatectomy showed a significant increase in regucalcin protein as compared with that of sham-operated rats. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) in the reaction mixture caused a significant increase in nuclear RNA synthesis activity of normal rat liver. This increase was completely blocked by the addition of regucalcin (1.0 microM). The effect of anti-regucalcin monoclonal antibody (50 ng/ml) in increasing nuclear RNA synthesis activity was significantly enhanced in the nuclei of regenerating liver obtained at 24, 48, or 72 h after partial hepatectomy. This enhancement was significantly suppressed by the addition of alpha-amanitin (10(-6) M), PD98059 (10(-5) M), staurosporine (10(-6) M), or vanadate (10(-3) M) in the reaction mixture. The present study demonstrates that endogenous regucalcin has a suppressive effect on the enhancement of RNA synthesis activity in the nucleus of regenerating rat liver with proliferative cells.  相似文献   

16.
The alteration of calcium content, Ca2+-ATPase activity, DNA content and DNA fragmentation in the nuclei of regenerating rat liver was investigated. Liver was surgically removed about 70% of that of sham-operated rats. the reduced liver weight by partial hepatectomy was completely restored at 3 days after the surgery. Regenerating liver significantly increased Ca2+-ATPase activity and DNA content in the nuclei between 1 and 5 days after hepatectomy. The nuclear calcium content was clearly increased from 2 days after hepatectomy. The increase of Ca2+-ATPase activity in regenerating liver was clearly inhibited by the presence of trifluoperazine (10 M), staurosporine (2.5 M) and dibucaine (10 M), which are inhibitors of calmodulin and protein kinase, in the enzyme reaction mixture. However, the nuclear enzyme activity in normal rat liver was not significantly altered by these inhibitors. Meanwhile, the increase of nuclear DNA content in regenerating liver was completely blocked by the administration of trifluoperazine (2.5 mg/100 g body weight), suggesting an involvement of calmodulin. Now, the nuclear DNA fragmentation was significantly decreased in regenerating liver, suggesting that this decrease is partly contributed to the increase in nuclear DNA content. The present study clearly demonstrates that regenerating liver enhances nuclear Ca2+-ATPase activity and induces a corresponding elevation of nuclear calcium content. This Ca2+-signaling system may be involved in the regulation of nuclear DNA functions in regenerating rat liver.  相似文献   

17.
EF1143 from Enterococcus faecalis, a life-threatening pathogen that is resistant to common antibiotics, is a homo-tetrameric deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase), converting dNTPs into the deoxyribonucleosides and triphosphate. The dNTPase activity of EF1143 is regulated by canonical dNTPs, which simultaneously act as substrates and activity modulators. Previous crystal structures of apo-EF1143 and the protein bound to both dGTP and dATP suggested allosteric regulation of its enzymatic activity by dGTP binding at four identical allosteric sites. However, whether and how other canonical dNTPs regulate the enzyme activity was not defined. Here, we present the crystal structure of EF1143 in complex with dGTP and dTTP. The new structure reveals that the tetrameric EF1143 contains four additional secondary allosteric sites adjacent to the previously identified dGTP-binding primary regulatory sites. Structural and enzyme kinetic studies indicate that dGTP binding to the first allosteric site, with nanomolar affinity, is a prerequisite for substrate docking and hydrolysis. Then, the presence of a particular dNTP in the second site either enhances or inhibits the dNTPase activity of EF1143. Our results provide the first mechanistic insight into dNTP-mediated regulation of dNTPase activity.  相似文献   

18.
It is shown, that DNA hydrolysis catalyzed by E. coli DNA polymerase I is inhibited, when a reaction mixture contains one type of deoxynucleoside 5'-triphosphate (dNTP). When the reaction mixture contains [32P]dNTP, then [32P] is incorporated into DNA and v. v. (32P) from DNA is transferred into dNTP. The nucleotide exchange between DNA and dNTP in the assay mixture is observed only in the case, when the chemical nature of nucleotide residue of dNTP and that of the 3'-terminus of DNA is the same. Analysis of products of DNA hydrolysis in the presence of one type of dNTP using electrophoresis in polyacrylamide gel shows that most of the DNA molecules are terminated at the 3'-termini by the dNMP residue of the same chemical nature as the dNTP in the assay mixture. However, in some cases DNA molecules contain one additional nucleotide residue. This phenomenon can be explained by incorporation of one additional dNMP residue originating from dNTP only in those cases, when a non-typical base pairing of this nucleotide residue with a template residue readily takes place. The above-mentioned facts can be interpreted within the model for DNA hydrolysis with involvement of two intermediate covalent forms of dNMP residues with DNA polymerase I; one dNMP-intermediate should be placed at the elongation center and the other--at the hydrolysis center. The DNA hydrolysis by 3'----5' exonuclease activity of DNA polymerase I proceeds through these two covalent forms. DNA polymerases alpha from calf thymus and T4 phage do not catalyze the nucleotide exchange between DNA and dNTP from the reaction media.  相似文献   

19.
Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA.  相似文献   

20.
The role of PARP, a nuclear enzyme involved in DNA synthesis, repair and cell transformation, was studies during liver regeneration in hypothyroid animals. Hypothyroidism was induced by in vivo administration of propylthiouracil. In regenerating euthyroid animals PARP activity is stimulated showing an early and significant increase at 1.5 h with a maximum at 6 h after partial hepatectomy. Such an increase returns to control values within 18 h preceding the onset of DNA synthesis. A markedly different behavior, with respect to euthyroids, has been evidenced in hypothyroid rats. At first, liver PARP level was about 2-fold higher in non regenerating hypothyroid rats with respect to control euthyroids. During regeneration, PTU-treated animals show a net decrease in PARP activity, with a minimum at 6-9 h after partial hepatectomy. The activity returns to control levels within 24 days. The minimum in PARP activity anticipates, also in this case, the onset of DNA synthesis, which exhibits a maximum at 15-18 h. During liver regeneration PARP activity shows modifications related to the beginning of de novo DNA synthesis. Furthermore, these variations in turn undergo the effects of hypothyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号