首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel bovine brain inositol-phospholipid-specific phospholipase C has been identified on the basis of chromatographic behaviour and purified to apparent homogeneity by a rapid three-step procedure. The purified enzyme has a molecular mass of 85 kDa on SDS/polyacrylamide gel electrophoresis and a specific activity of 24 mumol.min-1.mg-1. The enzyme is dependent on Ca2+ and shows a marked preference for inositol phospholipid substrates. The unique nature of this polypeptide was confirmed through partial protein sequence analysis.  相似文献   

2.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses.  相似文献   

3.
The mammalian retina contains at least two guanylyl cyclases (GC1 and GC2) and two guanylyl cyclase-activating proteins (GCAP1 and GCAP2). Here we present evidence of the presence of a new photoreceptor-specific GCAP, termed GCAP3, which is closely related to GCAP1. The sequence similarity of GCAP3 with GCAP1 and GCAP2 is 57 and 49%, respectively. Recombinant GCAP3 and GCAP2 stimulate GC1 and GC2 in low [Ca2+]free and inhibit GCs when [Ca2+]free is elevated, unlike GCAP1, which only stimulates GC1. GCAP3 is encoded by a distinct gene present in other mammalian species but could not be detected by genomic Southern blotting in rodents, amphibians, and lower vertebrates. The intron/exon arrangement of the GCAP3 gene is identical to that of the other GCAP genes. While the GCAP1 and GCAP2 genes are arranged in a tail-to-tail array on chromosome 6p in human, the GCAP3 gene is located on 3q13.1, suggesting an ancestral gene duplication/translocation event. The identification of multiple Ca2+-binding proteins that interact with GC is suggestive of complex regulatory mechanisms for photoreceptor GC.  相似文献   

4.
1. The distribution of phosphatidylinositol3, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate hydrolysis or phosphatidylinositol-specific phospholipase C (PI-PLC), activity in the bull reproductive system showed the highest specific activity in the isolated spermatozoa (SZ) followed by testis and different epididymal segments. Both the head and tail fractions of SZ were active. 2. The optimal solubilization of the enzyme from SZ was obtained with 0.2% Triton X-100 or at 0.05% detergent concentration when combined with a 60 sec sonication. The sucrose gradient centrifugation showed that PI-PLC was enriched in membrane fraction distinct from mitochondria and acrosomes. 3. The enzyme was purified by ammonium sulphate precipitation and fractionations by hydrophobic interaction chromatography, gel filtration, Con A-Sepharose affinity and chromatofocusing columns. The purified enzyme was able to hydrolyse all phosphatidylinositol substrates with optimum at pH 7.0 and activation by Ca2+, Cd2+ and Mn2+ but not phospholipids lacking the inositol residue. 4. In PAGE (8-25% gradient) the purified (aggregated) enzyme did not enter the gel. In SDS-PAGE two closely located bands were found with Mr-values of 15,000 and 18,000. Isoelectric focusing showed a wide band at pl 4.5-5.1. 5. Gel filtration resulted in a broad elution peak indicating multiple molecular forms (aggregates); the basic form had an apparent molecular weight of 100,000. The binding of the enzyme to Con A-Sepharose indicated that the enzyme is a glycoprotein.  相似文献   

5.
Phosphatidylinositol-specific phospholipase C was purified to homogeneity from soluble fraction of bovine platelets by ammonium sulfate fractionation, hydrophobic chromatography, DEAE ion exchange chromatography and gel filtration. The purified enzyme has a narrow pH optimum ranging from 6.5 to 7.5 and the molecular weight of the enzyme was estimated to be 143,000 by sodium dodecyl sulfate slab gel electrophoresis. The purified enzyme requires Ca2+ strictly for activity, which was markedly enhanced in the presence of arachidonate. No enhancement of the activity was observed in the presence of purified calmodulin. The activity was markedly inhibited in the presence of quinacrine but no inhibition by indomethacin was observed.  相似文献   

6.
Monophosphatidylinositol inositol phosphohydrolase (phosphatidylinositol-specific phospholipase C. PtdIns-PLC. EC 3.1.4.10) has been purified from a Bacillus thuringiensis culture supernatant and from the cellular fraction of a recombinant Escherichia coli clone containing the PtdIns-PLC gene from B. thuringiensis. The two-step purification procedure involved ion-exchange chromatography on DEAE-Sepharose followed by separation on a Mono-Q/FPLC-column with yields of 32% and 50%, respectively. The molecular mass was determined to be 34 kDa by SDS/PAGE. The isoelectric point of the enzyme was 5.15. The amino-terminal sequences were shown to be identical for the enzymes purified from both organisms. PtdIns-PLC was inhibited by divalent cations using mixed micelles of Triton X-100 and pure phosphatidylinositol. PtdIns-PLC activity was detectable on polyacrylamide gels by activity staining on phosphatidylinostiol-containing agarose.  相似文献   

7.
The gene encoding monophosphatidylinositol inositol phosphohydrolase (PI-specific phospholipase C, PI-PLC) of Bacillus thuringiensis was cloned in Staphylococcus carnosus TM300. The complete coding region comprises 987 base pairs corresponding to a precursor protein of 329 amino acids (molecular weight, 38095). The NH2-terminal sequence of the purified enzyme from Escherichia coli indicated that the mature PI-PLC consists of 299 amino acid residues with a molecular weight of 34586. Polyacrylamide gel electrophoresis revealed the same molecular weight for the purified enzyme isolated from the DNA-donor strain of B. thuringiensis and from the E. coli clone. By computer analysis, the secondary structure was predicted. The enzyme from the E. coli recombinant shows no activity on other phospholipids and sphingo-myelin. The cleaving specifity of PI-PLC was examined by thin layer chromatography.  相似文献   

8.
Patatin is the major protein constituent of potato tubers and displays broad esterase activity. The native enzyme actually belongs to a highly homologous multigene family of vacuolar glycoproteins. From these, the patB2 patatin gene was selected and cloned into pUC19 without its signal sequence but with an N-terminal histidine-tag. This patatin was overexpressed under the control of the lac promotor in Escherichia coli strain DH5alpha. The protein was recovered as inclusion bodies, folded into its native state by solubilization in urea and purified to homogeneity. Starting with one gram of inclusion bodies, 19 mg of pure and active recombinant patatin was isolated, with even higher specific activity than the glycosylated wild-type patatin purified from potato tubers. The purified enzyme showed esterolytic activity with p-nitrophenylesters dissolved in Triton X-100 micelles. The activity of patatin on p-nitrophenylesters with different carbon chain lengths showed an optimum for p-nitrophenylesters with 10 carbon atoms. Besides general esterolytic activity, the pure enzyme was found to display high phospholipase A activity in particular with the substrates 1,2-dioctanoyl-sn-glycero-3-phosphocholine (diC(8)PCho) (127 U.mg(-1)) and 1,2-dinonanoyl-sn-glycero-3-phosphocholine (diC(9)PCho) (109 U.mg(-1)). Recently, the structure of human cytosolic PLA(2) (cPLA(2)) was solved, showing a novel Ser-Asp active site dyad [1]. Based on a partial sequence alignment of patatin with human cPLA(2), we propose that patatin contains a similar active site dyad. To verify this assumption, conserved Ser, Asp and His residues in the family of patatins have been modified in patatin B2. Identification of active site residues was based on the observation of correctly folded but inactive variants. This led to the assignment of Ser54 and Asp192 as the active site serine and aspartate residues in patatin B2, respectively.  相似文献   

9.
A family of phospholipase D (PLD) proteins has recently been identified (Koonin, 1996; Ponting & Kerr, 1996) based upon amino acid sequence identity. This family includes human and plant PLDs, proteins encoded by open reading frames in pathogenic viruses and bacteria, as well as an endonuclease. The endonuclease, known as Nuc, is encoded by the IncN plasmid, pKM101, present in Salmonella typhimurium. The recombinant Nuc protein has been expressed and purified from Escherichia coli. The amino-terminal sequencing of the purified protein indicated that the mature protein started from the 23rd residue of the predicted sequence, suggesting that the protein is proteolytically processed during export to the periplasmic space. The recombinant enzyme was able to hydrolyze both double and single-strand DNA and an artificial substrate, bis(4-nitrophenyl) phosphate, which contains a phosphodiester bond. The enzyme activity was not inhibited in the presence of EDTA and was not regulated by divalent cations. The purified protein has been crystallized by hanging drop vapor diffusion methods, and those crystals diffract to 1.9 A resolution.  相似文献   

10.
11.
Phosphatidylinositol-specific phospholipase C (PI-PLC) cleaves phosphoinositides into two parts, lipid-soluble diacylglycerol and the water-soluble phosphorylated inositol. Two crystal forms of Bacillus cereus PI-PLC have been obtained by the vapor diffusion technique. Hexagonal crystals were grown from solutions containing polyethylene glycol (PEG; 4,000 to 8,000 D). The space group of these hexagonal crystals is P6(1)22 (or the enantiomorphic space group P6(5)22), with cell constants a = b = 133 A, and c = 231 A. The crystals diffract to 2.8 A. The second crystalline form was grown from a two-phase PEG (600 D)-sodium citrate solution. The phase diagram and PI-PLC distribution between phases has been determined. The enzyme crystallizes from the PEG-rich phase. The crystals are orthorhombic with space group P2(1)2(1)2(1) (a = 45 A, b = 46 A, c = 160 A), and contain one PI-PLC monomer per asymmetric unit. The orthorhombic crystals diffract to 2.5 A. Both the hexagonal and orthorhombic forms are suitable for crystallographic studies.  相似文献   

12.
Inositol-lipid-specific phospholipase C-delta 1 (PtdIns-PLC delta 1) was expressed in Escherichia coli as a fusion protein containing a short 22-amino-acid lac-Z-derived amino terminus. Under appropriate conditions, the phospholipase constituted approximately 0.2% of the detergent-soluble protein and could be purified to near homogeneity in a simple three step protocol. The catalytic properties of the purified enzyme closely resemble those of the eukaryote-derived protein. The suitability of bacterial expression for the investigation of PtdIns-PLC delta regulation is discussed.  相似文献   

13.
14.
15.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

16.
Purified phosphatidylinositol-specific phospholipase C from Staphylococcus aureus released a substantial proportion of the total alkaline phosphatase activity from a wide range of tissues from several mammalian species. Co-purification of the phospholipase C and alkaline phosphatase-releasing activities and the inhibition of both these activities by iso-osmotic salt solutions suggested that the releasing effect was unlikely to be due to a contaminant.  相似文献   

17.
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.  相似文献   

18.
In the culture supernatant of Cytophaga sp. we detected an enzyme that converted glycosylphosphatidyl-inositol-anchored acetylcholinesterase to the hydrophilic form. This enzyme had a cleavage specificity of a phospholipase C. It hydrolyzed phosphatidylinositol but did not act on phosphatidylcholine. On gel filtration the enzyme migrated with an apparent molecular mass of about 17 kDa. It displayed maximal activity between pH 6-6.5 and did not require cofactors for the expression of catalytic activity. Mercurials and zinc ions inhibited the enzyme and its activity also decreased with increasing ionic strength in the assay. With acetylcholinesterase as substrate optimal activity was obtained in pure micelles of Triton X-100, whereas in mixed micelles containing Triton X-100 and phosphatidylcholine the activity was reduced. The enzyme from Cytophaga sp. showed little activity towards acetylcholinesterase embedded in intact membranes where more than 1000-times higher concentrations of phosphatidylinositol-specific phospholipase C was necessary to solubilize acetylcholinesterase as compared to acetylcholinesterase in detergent micelles.  相似文献   

19.
The phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis can be activated by nonsubstrate interfaces such as phosphatidylcholine micelles or bilayers. This activation corresponds with partial insertion into the interface of two tryptophans, Trp-47 in helix B and Trp-242 in a loop, in the rim of the alphabeta-barrel. Both W47A and W242A have much weaker binding to interfaces and considerably lower kinetic interfacial activation. Tryptophan rescue mutagenesis, reinsertion of a tryptophan at a different place in helix B in the W47A mutant or in the loop (residues 232-244) of the W242A mutant, has been used to determine the importance and orientation of a tryptophan in these two structural features. Phosphotransferase and phosphodiesterase assays, and binding to phosphatidylcholine vesicles were used to assess both orientation and position of tryptophans needed for interfacial activity. Of the helix B double mutants, only one mutant, I43W/W47A, has tryptophan in the same orientation as Trp-47. I43W/W47A shows recovery of phosphatidylinositol-specific phospholipase C (PC) activation of d-myo-inositol 1,2-cyclic phosphate hydrolysis. However, the specific activity toward phosphatidylinositol is still lower than wild type enzyme and high activity with phosphatidylinositol solubilized in 30% isopropyl alcohol (a hallmark of the native enzyme) is lost. Reinserting a tryptophan at several positions in the loop composed of residues 232-244 partially recovers PC activation and affinity of the enzyme for lipid interfaces as well as activation by isopropyl alcohol. G238W/W242A shows an enhanced activation and affinity for PC interfaces above that of wild type. These results provide constraints on how this bacterial phosphatidylinositol-specific phospholipase C binds to activating PC interfaces.  相似文献   

20.
The construction of four vectors for high-level expression in Escherichia coli of the phosphatidylinositol-specific phospholipase C from Bacillus cereus or Bacillus thuringiensis is described. In all constructs the coding sequence for the mature phospholipase is precisely fused to the E. coli heat-stable enterotoxin II signal sequence for targeting of the protein to the periplasm. In one set of plasmids expression of the B. cereus or B. thuringiensis enzyme is under control of the E. coli alkaline phosphatase promoter, while in a second set of plasmids expression is under control of a lac-tac-tac triple tandem promoter. A simple and rapid procedure for complete purification of the phospholipase C overproduced in E. coli, involving isolation of the periplasmic proteins by osmotic shock followed by a single column chromatography step, is described. The largest quantity of purified enzyme, 40-60 mg per liter culture, is obtained with the plasmid expressing the B. cereus enzyme under control of the lac-tac-tac promoter. Lower quantities are obtained with the plasmids containing the alkaline phosphatase promoter (15-20 and 4-6 mg/liter for the B. cereus and B. thuringiensis enzymes, respectively) and with the plasmid expressing the B. thuringiensis phospholipase under control of the lac-tac-tac promoter (15-20 mg/liter). A comparison of the functional properties of the recombinant phospholipases with the native enzymes isolated from B. cereus or B. thuringiensis culture supernatant shows that they are identical with respect to their catalytic functions, viz., cleavage of phosphatidylinositol and cleavage of the glycosyl-phosphatidylinositol membrane anchor of bovine erythrocyte acetylcholinesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号