首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Passage rate through the digestive tracts of zebu cattle and sheep, and subsequent germination of egested seeds of four woody species from the Sudanian savanna, Acacia dudgeoni, Acacia seyal, Burkea africana and Prosopis africana, were studied. The result indicates large differences in passage rate among woody species, as well as between animals. The values ranged from 46% to 87% for seeds ingested by cattle while the lowest passage rate was 2.3% and the highest being 74% for seeds ingested by sheep. Among plant species, seeds of Prosopis africana had the highest passage rate through the digestive tract of both cattle and sheep. Seed passage through the gut showed a significant positive correlation with seed mass and thickness for cattle and sheep, respectively. The gut treatment and the retention time in the gut did not improve germination capacity and the speed of germination of dormant seeds. For non-dormant seeds of Acacia dudgeoni, the germination capacity was higher for seeds ingested by cattle than sheep. The speed of germination was also significantly higher for egested seeds than the control. It can be concluded that large herbivores could play an essential role in long distance dispersal of seeds. Gut treatment alone was not effective in breaking seed coat-imposed dormancy, although it enhanced the rate of germination of non-dormant seeds. To get a complete picture of the effect of frugivore on the release of seed dormancy, the combined effect of initial mastication and subsequent gut treatment needs to be investigated.  相似文献   

2.
Ethylene in seed dormancy and germination   总被引:17,自引:0,他引:17  
The role of ethylene in the release of primary and secondary dormancy and the germination of non-dormant seeds under normal and stressed conditions is considered. In many species, exogenous ethylene, or ethephon – an ethylene-releasing compound - stimulates seed germination that may be inhibited because of embryo or coat dormancy, adverse environmental conditions or inhibitors (e.g. abscisic acid, jasmonate). Ethylene can either act alone, or synergistically or additively with other factors. The immediate precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), may also improve seed germination, but usually less effectively. Dormant or non-dormant inhibited seeds have a lower ethylene production ability, and ACC and ACC oxidase activity than non-dormant, uninhibited seeds. Aminoethoxyvinyl-glycine (AVG) partially or markedly inhibits ethylene biosynthesis in dormant or non-dormant seeds, but does not affect seed germination. Ethylene binding is required in seeds of many species for dormancy release or germination under optimal or adverse conditions. There are examples where induction of seed germination by some stimulators requires ethylene action. However, the mechanism of ethylene action is almost unknown.
The evidence presented here shows that ethylene performs a relatively vital role in dormancy release and seed germination of most plant species studied.  相似文献   

3.
Freshly harvested seeds of Arabidopsis thaliana, Columbia (Col) accession were dormant when imbibed at 25°C in the dark. Their dormancy was alleviated by continuous light during imbibition or by 5 weeks of storage at 20°C (after-ripening). We investigated the possible role of reactive oxygen species (ROS) in the regulation of Col seed dormancy. After 24 h of imbibition at 25°C, non-dormant seeds produced more ROS than dormant seeds, and their catalase activity was lower. In situ ROS localization revealed that germination was associated with an accumulation of superoxide and hydrogen peroxide in the radicle. ROS production was temporally and spatially regulated: ROS were first localized within the cytoplasm upon imbibition of non-dormant seeds, then in the nucleus and finally in the cell wall, which suggests that ROS play different roles during germination. Imbibition of dormant and non-dormant seeds in the presence of ROS scavengers or donors, which inhibited or stimulated germination, respectively, confirmed the role of ROS in germination. Freshly harvested seeds of the mutants defective in catalase (cat2-1) and vitamin E (vte1-1) did not display dormancy; however, seeds of the NADPH oxidase mutants (rbohD) were deeply dormant. Expression of a set of genes related to dormancy upon imbibition in the cat2-1 and vet1-1 seeds revealed that their non-dormant phenotype was probably not related to ABA or gibberellin metabolism, but suggested that ROS could trigger germination through gibberellin signaling activation.  相似文献   

4.
Proteomic analysis of seed dormancy in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [(35)S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium.  相似文献   

5.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

6.
The probability that a seed will germinate depends on factors associated with genotype, maturation environment, post-maturation history, and germination environment. In this study, we examined the interaction among these sets of factors for 18 inbred lines from six populations of Bromus tectorum L., a winter annual grass that is an important weed in the semi-arid western United States. Seeds of this species are at least conditionally dormant at dispersal and become germinable through dry-afterripening under summer conditions. Populations and inbred lines of B. tectorum possess contrasting dormancy patterns. Seeds of each inbred line were produced in a greenhouse under one of three levels of maturation water stress, then subjected to immediate incubation under five incubation regimes or to dry storage at 20°C for 4 weeks, 12 weeks, or 1 year. Dry-stored seeds were subsequently placed in incubation at 20/30°C. Narrow-sense heritability estimates based on parent-offspring regressions for germination percentage of recently harvested seeds at each incubation temperature were high (0.518–0.993). Germination percentage increased with increasing water stress overall, but there were strong interactions with inbred line and incubation temperature. Inbred lines whose seeds were non-dormant over the full range of incubation temperatures when produced at low maturation water stress showed reaction norms characterized by little or no change as a function of increasing stress. For inbred lines whose dormancy status varied with incubation temperature, incubation treatments where seeds exhibited either very low or very high levels of dormancy showed the least change in response to maturation water stress. Inbred lines also varied in their pattern of dormancy loss during storage at 20°C, but maturation water stress had only a minor effect on this pattern. For fully afterripened seeds (1 year in storage at 20°C), inbred line and maturation water stress effects were no longer evident, indicating that differences in genotype and maturation environment function mainly to regulate dormancy and dormancy loss in B. tectorum, rather than to mediate response patterns of non-dormant seeds.  相似文献   

7.
The embryonic axes of Spanish-type peanut seeds that do not exhibit dormancy to any extent were found to produce ethylene during germination. Virginia-type peanut seeds of the extremely dormant variety NC-13 produced low levels of ethylene when imbibed but not germinating. Treatments that released dormancy of NC-13 peanut seeds resulted in increased ethylene production by the embryonic axis. The estimated internal concentration of ethylene in Virginia-type peanut seeds was 0.4 ppm at 24 hr of germination. Fumigation with an external concentration of 3.0 to 3.5 ppm for 6 hr was sufficient to break dormancy of Virginia-type peanut seeds. These results suggest that ethylene is associated with the germination processes of non-dormant seeds and participates in the breaking of seed dormancy of dormant peanut varieties.  相似文献   

8.
Induction and release of secondary dormancy in genetically pure dormant (AN-51, Mont 73) and non-dormant (CS-40, SH-430) lines of wild oat ( Avena fatua L.) were studied. These lines differed with regard to the optimal period of anaerobiosis necessary for induction of dormancy, and/or the degree (% of seeds acquiring dormancy) and duration of the dormancy induced. Secondary dormancy could be induced more effectively in the after-ripened seeds of dormant lines than in the non-dormant lines, where only a short-term dormancy could be induced (in 5–7 week-old-seeds). Higher anaerobiosis temperatures were more effective in inducing dormancy in all lines studied. Thus, as with primary dormancy, wild oat biotypes exhibit genetic variability in their secondary dormancy behaviour and factors like temperature can modify the expression of this trait.
The germination stimulants kinetin, isopentenyl adenine, sodium azide, potassium nitrate, ethanol and substituted phthalimides, which break primary dormancy in wild oats, stimulated germination of secondarily dormant seeds (line AN-51). Since these chemicals are structurally diverse, primary and secondary dormancies appear to be similar in part in their regulation.
Salicylhydroxamic acid, an inhibitor of cyanide-insensitive (alternative) respiration, did not inhibit: 1, spontaneous release of secondary dormancy in the line SH-430; and 2, stimulation of germination of secondarily dormant AN-51 seeds by various chemicals (except azide), suggesting that this respiratory pathway is not necessary for the release of induced dormancy.  相似文献   

9.
Flixweed is one of the most abundant weeds in North America and China, and causes a reduction in crop yields. Dormancy of flixweed seeds is deep at maturity and is maintained in soil for several months. To identify regulators of seed dormancy and germination of flixweed, the effect of environmental and hormonal signals were examined using dormant and non-dormant seeds. The level of dormancy was decreased during after-ripening and stratification, but long imbibition (over 5 days) at 4 °C in the dark resulted in the introduction of secondary dormancy. The strict requirement of duration of cold treatment for the break of dormancy may play a role in the seasonal regulation of germination. The germination of non-dormant flixweed seeds was critically regulated by red (R) and far-red (FR) light in a photoreversible manner. Sodium nitroprusside, a donor of nitric oxide (NO), promoted germination of half-dormant seeds, suggesting that NO reduced the level of seed dormancy. As has been shown in other related species, light elevated sensitivity to GA4 in dark-imbibied flixweed seeds, but cold treatment did not affect GA4-sensitivity unlike in Arabidopsis. Taken together, our results indicate that seed germination in flixweed and its close relative Arabidopsis is controlled by similar as well as distinct mechanisms in response to various endogenous and environmental signals.  相似文献   

10.
Question: In seeds which are regularly consumed by waterbirds in the field, how does gut‐passage modify their response to salinity gradients? Location: Doñana National Park salt marsh, south‐west of Spain. Methods: Seeds of Scirpus litoralis and Scirpus maritimus were collected and force fed to mallards (Anas platyrhynchos). Both the ingested seeds (passage) and non‐ingested seeds (controls) were exposed, in germination chambers, to a salinity range similar to that observed in the field (0–32 dS/m). After 30 days, the total percentage germination, the duration of the dormancy period and the germination speed were computed. The response of the different germination parameters to ingestion and salinity was analyzed using generalized lineal models. Recovery tests on seeds that did not germinate in the various treatments and tests of the effect of ingestion on the intrinsic variability in seed response were also performed. Results: An increase in salinity reduced germinability and increased the length of dormancy, while gut pas sage increased the intrinsic variability of the temporal seed response in both species. In S. litoralis there was a significant interaction between the effects of salinity and passage on germination rate. Passage increased germination rate at low salinities (≤2 dS/m) but decreased it at high salinities (≥4 dS/m). Conclusion: Gut‐passage by ducks significantly changes seed response to salinity. The outcome of plant‐animal interactions can be influenced by environmental gradients. Studies of germination in response to gut passage that do not take such gradients into account may produce misleading results.  相似文献   

11.
种子休眠是植物自身调节后代繁殖时间节律以适应生长环境的最重要方式,喀斯特是一种特殊的植物生长环境,植物种子休眠对这种生境适应的研究缺乏.为探讨种子休眠与种子大小、散落时间之间的联系,揭示喀斯特植物在长期的适应过程中的生殖对策,对滇中喀斯特岩溶地区的19科35种植物的种子萌发和休眠类型进行了初步研究.结果表明:(1)35种植物中,休眠物种(19种,54.29%)比不休眠物种多(16种,45.71%);(2)19种休眠的物种中,15种具生理休眠,4种具物理休眠,没有形态休眠、形态-生理休眠和联合休眠的植物;(3)具物理休眠的植物种子明显大于不休眠和生理休眠的植物种子;(4)雨季初期(4~7月)散落的种子不休眠比例很高(75.00%),而雨季后期(10月)和旱季(11月至次年3月)散落的种子的休眠比例很高,分别达80.00%和61.54%;(5)68.75%的乔木休眠;灌木的休眠比例为33.33%;藤本植物休眠和不休眠的物种比例相差不大;草本植物大部分(66.67%)不休眠.  相似文献   

12.
The mechanisms imposing a gibberellin (GA) requirement to promote the germination of dormant and non-dormant Arabidopsis seeds were analyzed using the GA-deficient mutant ga1, several seed coat pigmentation and structure mutants, and the abscisic acid (ABA)-deficient mutant aba1. Testa mutants, which exhibit reduced seed dormancy, were not resistant to GA biosynthesis inhibitors such as tetcyclacis and paclobutrazol, contrarily to what was found before for other non-dormant mutants in Arabidopsis. However, testa mutants were more sensitive to exogenous GAs than the wild-types in the presence of the inhibitors or when transferred to a GA-deficient background. The germination capacity of the ga1-1 mutant could be integrally restored, without the help of exogenous GAs, by removing the envelopes or by transferring the mutation to a tt background (tt4 and ttg1). The double mutants still required light and chilling for dormancy breaking, which may indicate that both agents can have an effect independently of GA biosynthesis. The ABA biosynthesis inhibitor norflurazon was partially efficient in releasing the dormancy of wild-type and mutant seeds. These results suggest that GAs are required to overcome the germination constraints imposed both by the seed coat and ABA-related embryo dormancy.  相似文献   

13.
Seed dormancy plays a key role in preventing seeds of higher plants from random germination under adverse environmental conditions. Previous studies suggested that a critical temperature could regulate germination of weedy rice seeds without primary dormancy at seed dispersion. However, what will happen to the non-dormant seeds after shattering in the soil seed banks when temperature fluctuates to exceed the critical temperature remains an interesting question to be investigated. To determine whether or not soil burial can change the status of dormancy in weedy rice seeds, we examined germination ratios of weedy rice seeds after soil-burial treatments. In addition, we compared hormone levels in the untreated seeds and viable but ungerminated seeds after soil burial. Results showed that soil burial induced a proportion of 41%–72% dormant seeds in the initially non-dormant weedy rice seeds. Also, the induction of seed dormancy is associated with the change of hormone levels in the seeds treated by soil burial, suggesting that soil burial can significantly activate the control of hormone production in seeds. Together, the previously reported mechanism of critical temperature-inhibited seed germination and the newly found phenomenon of soil burial-induced seed dormancy provide a “double-security” strategy to ensure germination of weedy rice seeds under a favorable condition in agricultural ecosystems. The findings not only reveal the important role of rapid evolution of adaptive functions in weeds, such as weedy rice, in adapting to changing agricultural environments, but also facilitate the design of strategies for effective weedy rice control practices.  相似文献   

14.
Seed germination and seedling emergence of ‘Arctic’ and ‘Lineta’ orchardgrass (Dactylis glomerata L.) and ‘Walsh’ and ‘LC9078a’ western wheatgrass (Pascopyrum smithii [Rydb.] L.) were studied both in the field and laboratory. Four seeding dates were conducted each year over 2 years and seedling emergence and seed fate in the soil were monitored. The effects of alternating temperature and light on germination were quantified and correlated with seedling emergence from soil and in the field. Orchardgrass seeds were less dormant than western wheatgrass as indicated by the disparity in germination percentage between constant and alternating temperatures. Seed germination percentage was usually higher than seedling emergence in the field for orchardgrass but lower for western wheatgrass, and temperature was not responsible for the difference. Exposing orchardgrass seeds to light during germination check helped break dormancy in orchardgrass when temperature was unfavorable (low and/or constant temperatures), while favorable temperatures (optimal, alternating temperatures) conditions overcame the inhibiting effect of light in western wheatgrass. The final seedling emergence of orchardgrass was either similar among the four seeding dates or decreased slightly from early May to early June. For western wheatgrass, however, final seedling emergence increased with seeding dates from early to late May and decreased in early June. Soil temperatures of the first 2 weeks after seeding increased from the early May to late May and then decreased. These temperatures were below or near the optimal temperatures for western wheatgrass seeds to release dormancy and germinate. Germination of the previously buried seeds indicated that orchardgrass and western wheatgrass had the potential for a high germination percentage under field conditions for all seeding dates. While soil temperatures close to the optimal temperature for dormancy breaking and germination promoted germination of orchardgrass, the same conditions could cause deterioration of seeds if they failed to germinate. For western wheatgrass, deeper dormancy reduced seed mortality.  相似文献   

15.

Background and Aims

Diptychocarpus strictus is an annual ephemeral in the cold desert of northwest China that produces heteromorphic fruits and seeds. The primary aims of this study were to characterize the morphology and anatomy of fruits and seeds of this species and compare the role of fruit and seed hetermorphism in dispersal and germination.

Methods

Shape, size, mass and dispersal of siliques and seeds and the thickness of the mucilage layer on seeds were measured, and the anatomy of siliques and seeds, the role of seed mucilage in water absorption/dehydration, germination and adherence of seeds to soil particles, the role of pericarp of lower siliques in seed dormancy and seed after-ripening and germination phenology were studied using standard procedures.

Key Results

Plants produce dehiscent upper siliques with a thin pericarp containing seeds with large wings and a thick mucilage layer and indehiscent lower siliques with a thick pericarp containing nearly wingless seeds with a thin mucilage layer. The dispersal ability of seeds from the upper siliques was much greater than that of intact lower siliques. Mucilage increased the amount of water absorbed by seeds and decreased the rate of dehydration. Seeds with a thick mucilage layer adhered to soil particles much better than those with a thin mucilage layer or those from which mucilage had been removed. Fresh seeds were physiologically dormant and after-ripened during summer. Non-dormant seeds germinated to high percentages in light and in darkness. Germination of seeds from upper siliques is delayed until spring primarily by drought in summer and autumn, whereas the thick, indehiscent pericarp prevents germination for >1 year of seeds retained in lower siliques.

Conclusions

The life cycle of D. strictus is morphologically and physiologically adapted to the cold desert environment in time and space via a combination of characters associated with fruit and seed heteromorphism.  相似文献   

16.
Aims Leymus chinensis is an original dominant plant in the Songnen grassland, and it has great value for restoration of severely degraded land. However, seeds are dormant, and low germination percentage is a problem for restoring L.chinensis grassland. The mechanism of seed dormancy is not been well understood. The primary aims of the present study were to investigate the dormancy mechanism of L.chinensis seeds (caryopses) with reference to the role of embryo-covering layers, endogenous hormones and temperature.Methods Changes in concentration of the endogenous hormones GA 3, indoleacetic acid (IAA), zeatin riboside (ZR) and abscisic acid (ABA) in L.chinensis seeds from anthesis to maturity were measured by the enzyme-linked immunosorbent assay method. Germination at different stages of maturity were tested at 16/28°C, 5/28°C and 5/35°C for intact seeds with glumes (control), intact seeds with glumes removed (naked-whole seeds) and intact seeds with glumes and one-half of the endosperm removed (naked-half seeds).Important findings Of the four endogenous hormones monitored, only the concentration of ZR differed significantly between the beginning and the end of seed development (increased); the GA 3 /ABA ratio also did not differ. Rank of germination percentage of control at the three temperature regimens was 5/28°C> 16/28°C> 5/35°C. Germination percentage of the naked-half seeds reached 100% under the three temperature regimens. We concluded that dormancy of L.chinensis seeds is not mainly controlled by endogenous hormones. Germination temperature, mechanical resistance of glumes and inhibition of endosperm are the main factors controlling dormancy and germination of L.chinensis seeds.  相似文献   

17.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

18.

Background and Aims

Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics.

Methods

Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested.

Key Results

Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context.

Conclusions

The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.Key words: Borszczowia, cold desert halophyte, physiological seed dormancy, seed germination, Suaeda  相似文献   

19.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

20.
不同贮藏和处理条件对不同植物的种子萌发有不同的影响。该文以河西走廊干旱半干旱区8种荒漠植物为研究对象, 探讨了种子经历不同冷层积(4 ℃、-5 ℃、-26 - 10 ℃)和室温干燥贮藏后的萌发响应。研究结果表明: 1)冷层积可使种子萌发率提高、保持不变或降低, 冷层积的有效温度下界可降至-5 ℃或更低。4 ℃和-5 ℃的冷层积使多裂骆驼蓬(Peganum multisectum)和驼蹄瓣(Zygophyllum fabago)种子的萌发率升高、萌发速度加快, 冬季过低的气温以及较大的温度变幅(-26 - 10 ℃)使部分种子萌发率升高。3种冷层积和室温干燥贮藏使黑果枸杞(Lycium ruthenicum)种子萌发率达到90%-100%。唐古特白刺(Nitraria tangutorum)、甘草(Glycyrrhiza uralensis)、苦马豆(Sphaerophysa salsula)种子经过3种冷层积和室温干燥贮藏后萌发率变化较小。中亚紫菀木(Asterothamnus centrali-asiaticus)种子对各种贮藏条件的响应不明显, 部分种子活性丢失。刺沙蓬(Salsola ruthenica)种子扩散时有较高的萌发率(84%), 经-5 ℃和-26 - 10 ℃冷贮藏后, 种子仍具有较高的萌发率, 经4 ℃冷贮藏后几乎不萌发, 大部分种子活性丢失。2)不同物种的种子经过不同方式的贮藏后, 萌发对温度的响应不同。经冷层积后的多裂骆驼蓬种子萌发响应于恒温, 驼蹄瓣和刺沙蓬种子萌发更加响应于变温条件; 多数植物种子在变温培养下萌发速度慢于恒温下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号