首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Japanese wingnut Pterocarya rhoifolia is a riparian canopy tree species that grows under a variety of climate conditions, including heavy snowfall, despite the difficulties posed to canopy trees in such environments. This suggests that P. rhoifolia might adapt its life history strategy to different snowfall conditions. This study compared several life history traits of this tree species in a cool temperate mountainous area in central Japan along a gradient of maximum snow depth. The following trends were observed with increasing maximum snow depth: (1) diameter at breast height decreased, maximum stem length and tree height shortened, and trees tended toward a ‘dwarf shrub’ form; (2) the number of sprout stems increased significantly, and these sprouts contributed to maintaining the population; and (3) seed production decreased. Our results suggest trade-offs between clonal growth (sprouting) and sexual reproduction (seed production), and between sprouting and height growth. We concluded that the life history strategy P. rhoifolia demonstrated adaptive plasticity in response to a gradient of maximum snow depth.  相似文献   

2.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

3.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

4.
5.
We investigated growth characteristics ofEuptelea polyandra Sieb. et Zucc. (Eupteleaceae), a Japanese endemic deciduous tree species growing on unstable ground such as that of very steep slopes with thin soil.Euptelea polyandra began to sprout at the juvenile stage and had a multiple-stemmed tree form. There was a positive correlation between diameter of the maximumsized stem within a stool (DMS) and the number of stems within the stool. Many stools had suffered from disturbances as shown by the fact that uprooting scars were found on 31.4% and 42.4%, respectively, of the stools of the two populations studied. Sprouting played a significance role in repairing damaged stems and stools, and at least 15.5% and 18.2% of the stools of the two populations, respectively, had apparently avoided death by sprouting. Sprouted stems gradually inclined with the increase in their relative sizes within each stool, and this seemed to facilitate the establishment of younger sprouted stems. The small younger sprouted stems had their own roots. There were dormant buds on stems which originated from axillary buds, and secondary dormant buds occurred by branching. The total number of dormant buds in a stool increased with DMS. It is concluded thatE. polyandra accumulates dormant buds for sprouting in order to respond to disturbances quickly.  相似文献   

6.
Feeding of predatory mites (Phytoseiulus persimilis, Galendromus occidentalis, and Neoseiulus cucumeris) on different life stages of Tetranychus atlanticus under optimal conditions was studied. Daily and total consumption of prey by predators and selection of prey of different life stages were studied for 5 days and for the entire feeding period. Average daily food consumption [number of individuals] for the entire life period of mature mite females constituted 0.43 females + 5.0 [nymphs and males] + 3.4 eggs of Tetranychus atlanticus in P. persimilis; 0.12 females + 3.70 [nymphs and males] + 3.10 eggs in G. occidentalis; and 0.19 females + 4.10 [nymphs and males] + 3.50 eggs in N. cucumeris. During the entire period of feeding, P. persimilis preferred large individuals and at the postembryonic stages selected prey to a greater extent than G. occidentalis and N. cucumeris (61.8 and 55.1%, respectively). The use of a 5-day express-method is possible for estimation of some biological characteristics of phytoseiids that previously consumed the same food for a long period. In other cases, analysis of characteristics for the entire life period is necessary.  相似文献   

7.
Phytophthora species cause enormous economic loss every year worldwide. Xenocoumacin 1 (Xcn1), isolated from the bacterium Xenorhabdus nematophilus, is a broad-spectrum antibiotic against agricultural pathogens, especially Phytophthora. To understand the inhibitory mode of Xcn1 toward Phytophthora pathogens, we determined the inhibitory effects of Xcn1 on Phytophthora capsici both in vitro and in vivo. In vitro, Xcn1 inhibited different stages in the life cycle of P. capsici, including sporangium formation, zoospore germination, and mycelial growth, with 50% effective concentration (EC50) values of 0.037, 0.81, and 2.44 μg ml?1, respectively. Xcn1 also reduced zoospore motility. In vivo, Xcn1 efficiently controlled the Phytophthora blight of pepper with a disease reduction of 99% at a concentration of 5 μg ml?1 assessed on the third day after incubation of wound stem plants. In addition, Xcn1-treated P. capsici mycelia exhibited increased mycelial branch spacing, evident plasmolysis, and leakage of intracellular components. In conclusion, in the presence of Xcn1, several stages in the life cycle of P. capsici were inhibited, and the hyphae exhibited obvious morphological changes.  相似文献   

8.
Northeastern U.S. forests are currently net carbon (C) sinks, but rates of C loss from these ecosystems may be altered by the projected reduction in snowpack and increased soil freezing over the next century. Soil freezing damages fine roots, which may reduce radial tree growth and stem respiration. We conducted a snow removal experiment at Harvard Forest, MA to quantify effects of a reduced winter snowpack and increased soil freezing on root biomass, stem radial growth and respiration in a mixed-hardwood forest. The proportion of live fine root biomass during spring (late-April) declined with increasing soil frost severity (P = 0.05). Basal area increment index was positively correlated with soil frost severity for Acer rubrum, but not Quercus rubra. Rates of stem respiration in the growing season correlated positively with soil frost duration in the previous winter, (\( R^{2}_{{{\text{LMM}}({\text{m}})}} \) = 0.15 and 0.24 for Q. rubra and A. rubrum, respectively). Losses of C from stem respiration were comparable to or greater than C storage from radial growth of Q. rubra and A. rubrum, respectively. Overall, our findings suggest that in mixed-hardwood forests (1) soil freezing has adverse effects on spring live root biomass, but at least in the short-term could stimulate aboveground processes such as stem respiration and radial growth for A. rubrum more than Q. rubra, (2) stem respiration is an important ecosystem C flux and (3) the increasing abundance of A. rubrum relative to Q. rubra may have important implications for C storage in tree stem biomass.  相似文献   

9.
Toxic heavy metal contamination in Chinese edible herbs has raised a worldwide concern. In this study, heavy metals in Epimedii Folium, an edible medicinal plant in China, were quantitatively analyzed. Variations of heavy metals in different species, in various organs (i.e., leaves, stems, and roots), in wild-growing and cultivated plants, and in 35 market samples of Epimedii Folium, were systematically investigated. In all of Epimedium samples, Hg (mercury) was not detectable (0.00 μg/g). Four species, Epimedium pubescens, Epimedium sagittatum, Epimedium brevicornu, and Epimedium wushanense, were found to contain Cu (copper) and Pb (lead). And contents of Cu and Pb in E. brevicornu were significantly higher than those in other species (P < 0.01). In wild-growing and cultivated Epimedium plants, Cd (cadmium) and As (arsenic) were not detectable, and concentrations of Cu and Pb in wild-growing plants were significantly higher than those in cultivated plants (P < 0.01). Cd was not detectable in leaves, roots, and stems, while organ specificity was apparent in the distribution of Cu, As, and Pb. And the highest levels of Cu and Pb were observed in roots and leaves, respectively. In Chinese markets, several samples of Epimedii Folium contained excessive Cu, Cd, As, and Pb beyond the national permissible limits. In summary, there was a large variation of heavy metals among Epimedii Folium samples, and Cu and Pb were the most important heavy metals contaminating the edible medicinal plant. Application of Epimedii Folium to drug and food industries will need to focus more on toxic heavy metal contamination.  相似文献   

10.
The coccinellid beetle Anovia punica Gordon (Coleoptera: Coccinellidae: Noviini) is an important predator of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). In order to gather information on the biological traits of A. punica, we conducted a series of studies, including of the developmental time of each life history stage, estimation of life table parameters, and predation rates under laboratory conditions [25.1 ± 1.6°C, with 70.5 ± 7.3% RH, and natural light regime, approx. 12:12 (L:D) h]. Developmental stages of A. punica were categorized as follows: egg stage, four larval instars, prepupal instar, pupal instar, and adult. Developmental time from egg to adult emergence averaged 29.41 ± 1.85 days, and 47.6% of the eggs developed to adulthood. Female and male survival was 94.42 and 90 days, respectively. Life table parameters show that one female of A. punica is replaced by 86 females (R 0), the intrinsic growth rate (r m ) was 0.1115, the average generation time (T) was 40 days, and the doubling time (D t ) was 6.2 days. The life table parameters suggest that A. punica can be used as a potential predator of C. multicicatrices and, more importantly, provided baseline information for a mass-rearing protocol. This is the first detailed study on the biology of A. punica that reports the potential of this predator as a biological control agent for scale insects of the tribe Iceryini.  相似文献   

11.
12.
13.
Brasenia Schreb. is a monotypic genus in the Cabombaceae, present nowadays on all continents except Europe and Antarctica. This thermophilous aquatic plant, which originated in the Tertiary, was a frequent element of aquatic plant life during the interglacial stages of the European Pleistocene. A systematic review of the palaeobotanical records of Brasenia pollen and seeds reveals its history in Europe from the Plio-Peistocene until the Eemian interglacial. Remains of Brasenia were typical for the climatic optima during each of these stages of the Pleistocene. In this paper the diversity of fossil Brasenia species is also shown. The most abundant and morphologically diverse seeds were found in sediments from eastern European sites. Brasenia species became extinct in Europe at the end of the last interglacial or at the beginning of the Weichselian glaciation. Different scenarios for their disappearance are proposed, including the specificity of the floral cycle, probable poor dispersal of seeds, or the scarcity of suitable water bodies for it to survive.  相似文献   

14.
Tree growth of Pinus canariensis at treeline in Tenerife, Canary Islands, is thought to be primarily controlled by wet season precipitation (P) prior to the current year´s growth. Therefore, we investigated the inter-annual variations in stem water deficit (ΔW) and radial growth (RG) during two consecutive years differing in wet season P. ΔW was extracted from stem circumference variations, and the influence of environmental variables was evaluated by Pearson correlation statistics. Wet season P was considerably lower in 2008 than in 2009; despite this difference in P between both years, shallow soil water availability was almost exhausted during both summers. However, the effect of shallow soil drought showing a clear seasonality of ΔW and RG was only detected in 2008. In summer 2009, RG rates were highest during the summer indicating that P. canariensis was able to tap water from deep soil layers originating from P prior to the current year´s growth. The ability to use deep soil water during extended periods of shallow soil water deficit was also reflected in a close positive correlation between RG and whole-tree water use. In our study, the effect of only one hydrological dry year resulted in a severe reduction in annual RG. Thus, when wet season P is low for a number of years, chronic drought may have negative implications for tree growth at treeline in Tenerife.  相似文献   

15.

Key message

We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen.

Abstract

Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
  相似文献   

16.
Dispersal, abiotic and biotic constraints are all involved in explaining the success of invasive plants but how these factors influence the different life stages of an invader remains poorly known. Focusing on highly invaded riparian habitats we asked: (1) how do propagule pressure, resource availability and resident vegetation influence the success of the invasive Asian vine Humulus japonicus at different stages of its life cycle (i.e. seedling, vegetative and flowering) (2) what is the influence of increasing resource availability on the performance and trait plasticity of H. japonicus compared to a functionally similar co-occurring native species? To answer the first question we performed a repeated field survey along the Gardon River (S France) with detailed measurements of distance to the riverbed, soil characteristics, light availability, and resident vegetation cover. To answer the second question we used a greenhouse experiment to compare the biomass and three functional traits of H. japonicus and Galium aparine along a gradient of increasing water and nitrogen availability. Initial germination success was only determined by abiotic constraints, while the role of biotic resistance increased for later stages with establishment success favoured by the interaction of low resident vegetation cover and high soil fertility, and final integrated success favoured by high light availability. H. japonicus performed better and showed higher plasticity in plant height than G. aparine under increased resource availability while their biomass did not differ in the lower part of the resource gradient. Our study demonstrates that by combining field and experimental studies and analysing responses at different life stages we can gain a more complete understanding of how ecological filters shape successful invasions in the course of the life cycle.  相似文献   

17.
Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance.  相似文献   

18.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

19.
20.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号