首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.  相似文献   

2.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

3.
Plants simultaneously associate with multiple microbial symbionts throughout their lifetimes. To address the question of whether the effects of simultaneous symbionts are contingent on the specific identities, we conducted a greenhouse experiment manipulating the presence and identities of arbuscular mycorrhizal fungi (AMF) and fungal endophytes on the shared host grass Elymus hystrix. Each plant host was inoculated with one of two AMF species having varying effects on host growth, or a sterile soil control. Further, we used naturally occurring endophyte‐infected (E+) and uninfected (E–) individuals from two populations of the endophyte Epichloë elymi that varied in their interaction with E. hystrix. We then measured responses of plants, AMF, and fungal endophytes. Overall, we found that the combined effects of AMF and fungal endophytes on plant growth were additive, reflecting the mutualistic quality of each symbiont independently interacting with host plants. However, fungal endophyte infection differentially altered hyphal colonization of the two AMF species and the identity of the coinfecting AMF species affected fungal endophyte fitness traits. The results of this study demonstrate that the outcome of interspecific symbiotic interactions varies with partner identity such that the effects of simultaneous symbioses can not be generalized.  相似文献   

4.
Symbiotic infection with fungal endophytes has been shown to decrease herbivory in several temperate grasses. We tested the hypothesis that foliar endophytes of grasses may also affect below-ground processes upon their host death, by altering the litter quality for detritivores or the microenvironment for decomposition. Microcosm–litterbag experiments were used to assess decay rates for litter produced by endophyte ( Neotyphodium sp.) infected vs uninfected Lolium multiflorum plants, and to examine endophyte-mediated effects of prior site occupants on current litter decomposition. We found that litter from endophyte-infected L. multiflorum decomposed more slowly than litter from endophyte-free conspecifics and from a naturally uninfected grass, Bromus unioloides . Furthermore, the endophyte–grass association modified the decomposition environment, so that B. unioloides litter decomposed faster when placed underneath a thick layer of endophyte-free L. multiflorum litter. Litter decay rates increased with the amount of root debris remaining in situ from the previous season, but were not affected by the infection status of prior site occupants. The lower decomposability of litter from infected L. multiflorum plants persisted across a range of microenvironments, as determined by different amounts of above-ground litter and soil moisture conditions. Endophyte infection tended to reduce the N content of decaying litter; however, litter N and C/N ratio mainly accounted for interspecific differences in decomposition. Our results imply that fungal endophytes not only can affect herbivory food chains, but also soil organisms and the ecosystem processes they regulate. This study suggests a novel role for symbiotic foliar endophytes in linking above-ground and below-ground sub-systems.  相似文献   

5.
6.
Eschen R  Hunt S  Mykura C  Gange AC  Sutton BC 《Fungal biology》2010,114(11-12):991-998
Foliar fungal endophytes are ubiquitous, but understudied symbionts of most plant species; relatively little is known about the factors affecting their occurrence, diversity and abundance. We tested the effects of soil nutrient content and arbuscular mycorrhizal (AM) colonization on the occurrence of foliar endophytic fungi in Cirsium arvense in two field studies. In the first study, we assessed relationships between soil moisture, organic matter, carbon and nitrogen content and plant water, nitrogen and carbon content and AM colonization and the occurrence of foliar endophytic fungal species. In the second study, we manipulated soil nutrient content and AM colonization of potted seedlings and identified differences in endophytic fungal species composition of the leaves and stems. The results reveal that endophytes can occur either more or less frequently, depending on soil nutrient and plant water content and AM colonization. We propose that these patterns were the result of differences in fungal growth responses to nutrient availability in the leaves, which can be affected by resources obtained from the soil or symbiotic fungi in the roots.  相似文献   

7.
Many plants support symbiotic microbes, such as endophytic fungi, that can alter interactions with herbivores. Most endophyte research has focused on agronomically important species, with less known about the ecological roles of native endophytes in native plants. In particular, whether genetic variation among endophyte symbionts affects herbivores of plant hosts remains unresolved for most native endophytes. Here, we investigate the importance of native isolates of the endophyte Epichlo? elymi in affecting herbivory of the native grass host, Elymus hystrix. Experimental fungal isolate-plant genotype combinations and endophyte-free control plants were grown in a common garden and exposed to natural arthropod herbivory. Fungal isolates differed in their effects on two types of herbivory, chewing and scraping. Isolates exhibiting greater sexual reproduction were associated with greater herbivore damage than primarily asexual isolates. Endophyte infection also altered patterns of herbivory within plants, with stroma-bearing tillers experiencing up to 30% greater damage than nonstroma-bearing tillers. Results suggest that intraspecific genetic variation in endophytes, like plant genetic variation, can have important 'bottom-up' effects on herbivores in native systems.  相似文献   

8.
Perennial ryegrass (Lolium perenne) is a cool-season, perennial species widely used for forage and turf. It is often infected by a clandestine, endophytic fungus (Neotyphodium lolii) that has the potential to affect host growth responses to abiotically stressful conditions. In some species, the grass-endophyte symbiosis is mutualistic, but the relationship is reported to be contingent on environmental conditions and host genotype in L. perenne. The objective of this research was to determine the potential effects of endophyte infection on recovery from severe drought stress in variable genotypes of a perennial ryegrass cultivar. Sixteen infected (+E) and 16 uninfected (-E) ramets were planted in the greenhouse for each of 10 ryegrass genotypes. Eight +E and eight -E plants per genotype were exposed to three sequential droughts where water was withheld for 11-14 d, resulting in <5% soil moisture; the others (control) were watered as needed. Response variables were tiller numbers 1 wk and 4 wk after drought, and leaf area and dry mass of shoots and roots 7 wk after drought. In both control and drought, -E plants had more tillers, and greater leaf area and total mass, than +E plants, suggesting a detrimental effect of endophytic fungi. Fungal hyphae survived the drought and were abundant in post-drought, +E plants. The effects of endophytes were specific for particular host genotypes, as exemplified by significant genotype × endophyte interactions. Root : shoot ratio and percent of mass allocated to tiller bases (a rough measure of resource storage) showed genotype × endophyte × drought interactions. There was plasticity for root : shoot ratio and genetic variation in the ability to restore root growth during recovery from drought. For 7 of 10 genotypes, -E plants showed an equal or greater allocation to tiller bases than +E plants following drought recovery, illustrating a cost to endophyte infection for some genotypes. The symbiotic relationship between L. perenne and its endophyte primarily benefits the fungus, not the host, under many environmental conditions.  相似文献   

9.
Symbiotic interactions between plants and microorganisms have recently become the focus of research on biological invasions. However, the interaction between different symbionts and their consequences in host-plant invasion have been seldom explored. Here, we propose that vertically transmitted fungal endophytes could reduce the dependency of invasive grasses on mycorrhizal fungi allowing host establishment in those environments where the specific mutualist may be not present. Through analyzing published studies on nine grass species, we evaluated the effect of seed-borne Epichloë endophytes on the relationship of invasive and non-invasive grasses with arbuscular mycorrhizal fungi (AMF), a symbiosis known to be fundamental for plant fitness and invasion success. The endophyte effect on AMF colonization differed between invasive and non-invasive grasses, reducing mycorrhization only on invasive species but with no impact on their biomass. These results allowed us to propose that Epichloë endophytes could reduce the dependency of host plants on the mutualism with AMF, promoting host grass establishment and subsequent invasion. Simultaneous interactions with different types of mutualists may have profound effects on the host-plant fitness facilitating its range expansion. Our findings suggest that some specific mutualistic fungi such as epichloid endophytes facilitate host invasion by reducing the requirements of the benefits derived from other mutualisms.  相似文献   

10.
The lack of clarity on how the intensity and importance of plant interactions change under the co‐occurrence of stress and disturbance strongly impedes assessing the relative importance of plant interactions for species diversity. We addressed this issue in subalpine grasslands of the French Pyrenees. A natural soil moisture gradient further experimentally stretched at both ends was used and a mowing disturbance treatment was applied at each position along the soil moisture gradient. Changes in intensity and importance of plant interactions were assessed by a neighbour removal experiment using four target ecotypes. A structural equation modelling approach was used to assess the relative impact of stress, disturbance, the intensity and importance of plant interactions on diversity at both the neighbourhood and community scales. Without mowing, changes in intensity and importance of plant interactions only diverged in the dry part of the soil moisture gradient. The intensity of plant interactions linearly shifted from competition to facilitation with increasing stress, while the importance followed a hump‐shaped relationship. Species diversity components were tightly related to the importance of plant interactions only, both the neighbourhood and community scales. Mowing disturbance strongly reduced the importance of facilitation along the soil moisture gradient, and suppressed the relationship between the importance of plant interactions and diversity components. Together, our results highlight that 1) the importance is the best predictor of variations in species diversity in this subalpine herbaceous system, and 2) that fine‐scale processes such as plant interactions can affect the entire plant communities. Finally, our results suggest that high level of constraints due to co‐occurring stress and disturbance can inhibit the effects of plant interactions on species diversity, highlighting their potential role in regulating diversity and the maintenance/extinction of plant communities. Synthesis How plant interactions change along environmental gradients is an unsolved debate, particularly when both stress and disturbance interact. This lack of clarity explains why the relative impact of plant interactions (intensity and importance) on species diversity has been rarely assessed. Using an experimental approach, we found that the importance of plant interactions highly contributed to variation in species diversity, confirming that neighbourhood scale processes such as plant interactions can affect the entire plant communities. The co‐occurrence of stress and disturbance inhibited the effects of plant interactions, highlighting that plant interactions may regulate drops of diversity and the maintenance/extinction of plant communities.  相似文献   

11.
Anthropogenic impact represents a major pressure on ecosystems, yet little is known about how it affects symbiotic relationships, such as mycorrhizal symbiosis, which plays a crucial role in ecosystem functioning. We analyzed the effects of three human impact types – increasing urbanity, introduction of alien plant species (alienness) and modifications in plant species distribution ranges (as a proxy for naturalness) – on plant community overall mycorrhization (including arbuscular, ecto‐, ericoid and orchid mycorrhizal plants) and arbuscular mycorrhization (indicating the degree of forming mycorrhizal symbiosis at plant community level using the relative abundance of mycorrhizal and arbuscular mycorrhizal plants, respectively). The study was carried out in three habitat types, each dominated by a distinct mycorrhizal type – ectomycorrhizal woodlands, ericoid mycorrhizal heathlands and arbuscular mycorrhizal grasslands – at the regional scale in the Netherlands. The response of community mycorrhization and arbuscular mycorrhization to anthropogenic influence showed contrasting patterns, depending on the specific aspect of human impact. Community mycorrhization responded negatively to urbanity and positively to increasing alienness, while arbuscular mycorrhization showed the reverse trend. More natural heathlands were found to be more mycorrhizal and less arbuscular mycorrhizal. The strongest responses were detected in woodlands and heathlands, while mycorrhization in grasslands was relatively insensitive to human impact. Our study highlights the importance of considering mycorrhizal symbiosis in understanding and quantifying the effects of anthropogenic influence on plant communities, especially in woodlands and heathlands.  相似文献   

12.
Climate change can profoundly impact carbon (C) cycling of terrestrial ecosystems. A field experiment was conducted to examine responses of total soil and microbial respiration, and microbial biomass to experimental warming and increased precipitation in a semiarid temperate steppe in northern China since April 2005. We measured soil respiration twice a month over the growing seasons, soil microbial biomass C (MBC) and N (MBN), microbial respiration (MR) once a year in the middle growing season from 2005 to 2007. The results showed that interannual variations in soil respiration, MR, and microbial biomass were positively related to interannual fluctuations in precipitation. Laboratory incubation with a soil moisture gradient revealed a constraint of the temperature responses of MR by low soil moisture contents. Across the 3 years, experimental warming decreased soil moisture, and consequently caused significant reductions in total and microbial respiration, and microbial biomass, suggesting stronger negatively indirect effects through warming‐induced water stress than the positively direct effects of elevated temperature. Increased evapotranspiration under experimental warming could have reduced soil water availability below a stress threshold, thus leading to suppression of plant growth, root and microbial activities. Increased precipitation significantly stimulated total soil and microbial respiration and all other microbial parameters and the positive precipitation effects increased over time. Our results suggest that soil water availability is more important than temperature in regulating soil and microbial respiratory processes, microbial biomass and their responses to climate change in the semiarid temperate steppe. Experimental warming caused greater reductions in soil respiration than in gross ecosystem productivity (GEP). In contrast, increased precipitation stimulated GEP more than soil respiration. Our observations suggest that climate warming may cause net C losses, whereas increased precipitation may lead to net C gains in the semiarid temperate steppe. Our findings highlight that unless there is concurrent increase in precipitation, the temperate steppe in the arid and semiarid regions of northern China may act as a net C source under climate warming.  相似文献   

13.
Fungal endophytes in cool-season grasses may affect communities at multiple trophic levels. However, it is unclear whether community-scale endophyte effects arise due to the endophyte itself or as a result of unique, endophyte–host interactions. We used a long-term field experiment to test whether common-toxic (CT) and non-ergot alkaloid-producing (novel) endophytes in Schedonorus arundinaceus (tall fescue) forage cultivars consistently affect communities across tall fescue hosts. Tilled plots (2 × 2 m; Guelph, ON) were seeded with Georgia 5 and Jesup cultivars containing either the CT or AR542 (novel) endophyte and allowed to be re-colonized by plant species from the local propagule pool. Non-seeded control plots were included to assess effects of seeding the non-native grass. We assessed plant, invertebrate, soil moisture, and soil nutrient responses to the endophyte–cultivar treatments after four growing seasons. Seeding tall fescue affected plant species abundances, but not richness, and did not consistently alter soil moisture and nutrient pools. Endophyte identity in the tall fescue cultivars affected the communities, but effects were not consistent between cultivars. Within Georgia 5, the AR542 endophyte reduced tall fescue abundance and altered the invertebrate community relative to CT plots. Within Jesup, the AR542 endophyte reduced species evenness and decreased soil moisture during dry periods relative to CT plots. Endophyte effects were not consistent between cultivars, and it is probable that the community-scale effects of endophyte infection in tall fescue cultivars arise due to unique interactions between cultivar and endophyte.  相似文献   

14.
Certain cool season grasses establish systemic and asymptomatic symbioses with clavicipitaceous fungi of the genus Neotyphodium, which affect multiple biotic interactions within host neighborhood. The presumed symbiont-mediated plant resistance to pathogens is mostly based on studies performed under laboratory and greenhouse conditions. Here we investigated, in two outdoor experiments, the relation between two fungi of the same family with opposite effects on Lolium multiflorum plants: the mutualist endophyte Neotyphodium occultans, and the pathogen Claviceps purpurea. Natural infection and its consequences on symbiotic and non-symbiotic plants were studied under varying conditions of stress by herbicide. In both experiments, N. occultans reduced significantly the infection by C. purpurea at population levels (70 % less). The percentage of spikes infected by C. purpurea was almost three times lower in endophyte-symbiotic plants than in non-symbiotic ones. However, the protective effect was not maintained under stress condition. Our results show that constitutive symbionts such as the systemic fungal endophytes mediate the interaction between host grasses and pathogens, although the effect may depend on the level of stress in the environment.  相似文献   

15.
Plant–fungal symbiotic associations are ubiquitously distributed in natural plant communities. Besides the well-studied mycorrhizal symbiosis and grass systemic clavicipitaceous endophytes, recently, nonsystemic and horizontally transmitted fungal endophytes serving as plant symbionts have been increasingly recognized. Pure culture isolation and culture-independent molecular methods indicate that all parts of healthy plant tissues potentially harbor diverse and previously unknown fungal lineages. Limited evidence also supports a hypothesis that endophytic mycobiota dynamics may have a role in evolution of plants. High variability or “balanced antagonism” can be generally characterized with host–endophyte interactions, which implies that the outcome of symbiotic interactions can fall within a continuum ranging from mutualism to commensalism, and ultimately pathogenicity. Despite this complicated system, admittedly, fungal endophytes really endow the host with an extended phenotype. Accumulating facts illustrate that plant nutrition acquisition, metabolism, and stress tolerance may be strengthened or modulated via fungal symbionts. Piriformospora indica, a member of the order Sebacinales, simultaneously confers host resistance to biotic and abiotic stress. The ecological relevance of other fungal groups, including foliar endophytes, root dark septate endophytes (DSEs), some opportunistic and avirulent microsymbionts (for example, Trichoderma and Fusarium), and even uncultured fungi structurally and physiologically integrated with host tissues, are also being deeply exploited. Production of bioactive metabolites by fungi, overexpression of stress-related enzymes, and induced resistance in hosts upon fungal colonization are responsible for direct or indirect beneficial effects to hosts. More knowledge of endophyte-mediated enhancement of host performance and fitness will offer alternatively valuable strategies for plant cultivation and breeding. Meanwhile, with unprecedented loss of biodiversity, discovery of indigenously novel symbiotic endophytes from natural habitats is urgently needed. In addition, we present some approaches and suggestions for studying host–endophyte interactions.  相似文献   

16.
All plants in natural ecosystems are thought to be symbioticwith mycorrhizal and/or endophytic fungi. Collectively, thesefungi express different symbiotic lifestyles ranging from parasitismto mutualism. Analysis of Colletotrichum species indicates thatindividual isolates can express either parasitic or mutualisticlifestyles depending on the host genotype colonized. The endophytecolonization pattern and lifestyle expression indicate thatplants can be discerned as either disease, non-disease, or non-hosts.Fitness benefits conferred by fungi expressing mutualistic lifestylesinclude biotic and abiotic stress tolerance, growth enhancement,and increased reproductive success. Analysis of plant–endophyteassociations in high stress habitats revealed that at leastsome fungal endophytes confer habitat-specific stress toleranceto host plants. Without the habitat-adapted fungal endophytes,the plants are unable to survive in their native habitats. Moreover,the endophytes have a broad host range encompassing both monocotsand eudicots, and confer habitat-specific stress tolerance toboth plant groups. Key words: Colletotrichum, fungal endophytes, stress tolerance, symbiosis, symbiotic lifestyle Received 19 June 2007; Revised 25 November 2007 Accepted 30 November 2007  相似文献   

17.
Neotyphodium endophytes in introduced agronomic grasses are well known to increase resistance to herbivores, but little is known of interactions between Neotyphodium endophytes and herbivores in native grass populations. We investigated whether endophytes mediate plant-herbivore interactions in a native grass species, Festuca arizonica in the southwestern United States, in two ways. First, to test the prediction that the presence and frequency of endophyte-infected (E+) plants should increase with increasing herbivory, we determined endophyte frequencies over a 4-year period in six natural Arizona fescue populations. We compared Neotyphodium frequency among plants growing inside and outside long-term vertebrate grazing exclosures. Second, we experimentally tested the effects of Neotyphodium infection, plant clone, and soil nutrients on plant resistance to the native grasshopper Xanthippus corallipes. Contrary to predictions based upon the hypothesis that endophytes increase herbivore resistance, levels of infection did not increase in plants subjected to grazing outside of exclosures relative to ungrazed plants within exclosures. Instead, endophyte frequencies tended to be greater inside the exclosures, where long-term vertebrate grazing was reduced. The grasshopper bioassay experiment corroborated these long-term patterns. Survival of grasshoppers did not differ between infected (E+) and uninfected (E–) plants. Instead, mean relative growth rate of grasshoppers was higher on E+ grasses than on E– ones. Growth performance of newly hatched grasshopper nymphs varied among host plant clones, although two of six clones accounted for most of this variation. Our results suggest that Neotyphodium-grass-herbivore interactions may be much more variable in natural communities than predicted by studies of agronomically important Neotyphodium-grass associations, and herbivory is not always the driving selective force in endophyte-grass ecology and evolution. Thus, alternative hypotheses are necessary to explain the wide distribution and variable frequencies of endophytes in natural plant populations. Received: 15 February 1999 / Accepted: 19 July 1999  相似文献   

18.
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant–plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)–host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop–weed interference. In a 4‐years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non‐host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.  相似文献   

19.
B rown , M. E. & G arr , G. R. 1984 Interactions between Azotobacter chroo-coccum and vesicular-arbuscular mycorrhiza and their effects on plant growth. Journal of Applied Bacteriology 56 , 429–437.
The effects of simultaneous inoculation of roots of lettuce seedlings with vesicular-arbuscular endophytes and Azotobacter chroococcum are described. Endophytes alone increased yields of lettuce grown in partially sterilized P-deficient soil, but not in the same unsterile soil. Dual inoculation with endophytes and Azotobacter in both soils produced larger plants than either inoculum alone. In another poorly structured unsterile soil with adequate P for plant growth, endophytes depressed yields of lettuce. There was no association between endophytes and Azotobacter . In none of the experiments did Azotobacter influence the level of endophyte infection in the roots; but numbers of Azotobacter on the root systems were decreased in the presence of the endophytes. Azotobacter alone always increased growth of young plants before the effects of the endophytes were observed.  相似文献   

20.
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号