首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-step precipitation polymerization procedure for the synthesis of molecularly imprinted polymers selective for 17beta-estradiol yielding imprinted micro and nanospheres was developed in this study and compared to templated materials obtained by conventional bulk polymerization. The polymer particles prepared by precipitation polymerization exhibited a regular spherical shape at the micro and nanoscale with a high degree of monodispersity. Moreover, the influence of the polymerization temperature, and the ratio of functional monomer to cross-linker on the size of the obtained particles was investigated. The selectivity of the imprinted micro and nanospheres was evaluated by HPLC analysis and via radioligand binding assays. HPLC separation experiments revealed that the imprinted microspheres provide higher or similar affinity to the template in contrast to imprinted polymers prepared by conventional bulk polymerization or synthesized by multi-step swelling/polymerization methods. The dimensions of the imprinted nanospheres facilitate suspension in solution rendering them ideal for binding assay applications. Results from saturation and displacement assays prove that the imprinted nanospheres exhibit superior specific affinity to the target molecule in contrast to control materials. The binding properties of the nanospheres including binding isotherms and affinity distribution were studied via Freundlich isotherm affinity distribution (FIAD) analysis. Moreover, release experiments show that 70% of rebound 17beta-estradiol was released from the imprinted nanospheres within the first 2 h, while more intimately bound 17beta-estradiol molecules (approx. 16%) were released in the following 42 h. Fitting Brunnauer-Emmet-Teller (BET) multi-point adsorption isotherms to the obtained results indicated that the micro and nanospheres are characterized by a comparatively homogenous and narrow distribution of mesopores in contrast to the corresponding bulk polymers.  相似文献   

2.
Summary -Propiolactone (BPL) was polymerized in bulk using lipase as a catalyst to form the polyester having a molecular weight of greater than 50000. The molecular weight of the polyesters produced by the lipase-catalyzed polymerization of BPL was inversely dependent on the concentration of lipase. Both molecular weight and polymerization speed were increased with increasing reaction temperature from 40 to 60 °C.  相似文献   

3.
A high molecular weight aliphatic polythioester was prepared by lipase-catalyzed polymerization of hexane-1,6-dithiol and dimethyl sebacate using the technique of ring-opening polymerization of a cyclic thioester. The cyclic thioester monomer was first prepared using lipase from Candida antarctica in dilute solution. The monomer was then polymerized by the same lipase in bulk to produce a polythioester with an M(w) of about 120 000 g/mol, which was significantly higher than that of a polythioester obtained by direct polycondensation of the dithiol and diacid. The polymerization rate and thermal properties of the product were measured and compared with those of the corresponding polyester prepared by ring-opening polymerization of a cyclic ester.  相似文献   

4.
Upgrading of the surface characteristics could enhance the bulk properties of naturally abundant fiber-forming materials for better performance or create new value-added products. Laccase can induce cross-linkage and covalent coupling of low molecular weight compounds onto lignocellulosic surfaces. For this purpose the 38-kDa laccase from Trametes hirsuta was purified and characterized. The best conditions for laccase-induced coating of flax fibers were determined. This evaluation was based on the obtained coloration and color depth. A screening was carried out with different phenols for their potential as monomers for enzyme-catalyzed polymerization resulting in a coating with antibacterial performance. While all the methoxyphenols showed different coloration with weak fastness properties, bacterial growth of Bacillus subtilis and Staphylococcus aureus was reduced significantly using ferulic acid and hydroquinone. Using laccase-induced coupling and polymerization, multi-functionality of the lignocellulosic surface, such as coloration and antimicrobial performance, was achieved, which depended on the nature of the applied phenolic monomer.  相似文献   

5.
The variety of applications utilizing molecularly imprinted polymers (MIPs) requires synthetic strategies yielding different MIP formats including films, irregular particles, or spheres, along with precise knowledge on the specific material characteristics, such as binding capacity and binding efficiency of these materials. In response to this demand, MIPs are prepared in different formats by variation of the polymerization methodology. It is commonly agreed that micro- and sub-microspheres are particularly advantageous MIP formats, due to their monodispersity and facile synthesis procedures in contrast to conventional imprinted polymers prepared by bulk polymerization. However, the differences in actual rebinding characteristics of different MIP formats based on molecular interactions under a variety of binding/rebinding conditions have not been studied in detail to date. Consequently, the present work details an analytical strategy generically applicable to MIP systems for rebinding studies including equilibrium binding, non-equilibrium binding, and release experiments enabling more profound understanding on the molecular interactions between the imprinted materials and the template molecules. In this study, three MIP formats were considered for the same template molecule, 17beta-estradiol: irregularly shaped particulate polymers prepared by bulk polymerization and grinding, microspheres, and sub-microspheres. The latter two formats were synthesized via precipitation polymerization using different processing strategies. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The obtained results indicate that microspheres prepared by precipitation polymerization provide superior rebinding properties during equilibrium binding in contrast to bulk polymers and sub-microspheres, and that the rebinding properties are different during equilibrium binding versus non-equilibrium binding. The median binding affinity constant determined during non-equilibrium rebinding is higher than the values obtained from equilibrium rebinding. Furthermore, the binding site distribution appears more homogeneous thief derived from non-equilibrium rebinding, as reflected in a heterogeneity index of m=0.725. Moreover, it is hypothesized that the specific interactions between template and monomers are related to the porosity of the imprinted polymers, which implies that the amount of binding sites and the pore sized distribution of the imprinted materials are a critical factor in achieving the desired MIP performance in various analytical applications. The BET results indicate that particles prepared with lower cross-linker-to-template ratio have a reduced surface area. Furthermore, it can be expected that there are less specific binding sites available at particles with reduced surface area and pore volume given similar distribution of the binding sites, as confirmed by the equilibrium binding isotherm studies. The pore size distribution results reveal that control of the pore size in the range of 100-180 A is essential to obtain the desired retention properties and Gaussian peak shape during HPLC analysis of small molecules.  相似文献   

6.
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.  相似文献   

7.
The affects of lipase concentration on ring-opening bulk polymerizations of epsilon-caprolactone and trimethylene carbonate were studied by using Novozym 435 (immobilized form of lipase B from Candida antarctica) as biocatalyst. The polymerization of epsilon-caprolactone was carried out in bulk at 70 degrees C. Three lipase concentrations of 9.77, 1.80 and 0.50 mg/mmol epsilon-CL were used in the experiment. The results showed that increasing the lipase concentration used in the polymerization system resulted in an increased rate of monomer consumption. For an enzyme concentration of 9.8 mg lipase per mmol monomer, an 80% monomer conversion was achieved in a 4-h time period, while for the lower enzyme concentration of 1.8 mg lipase per mmol monomer, 48 h were needed to reach monomer conversion. Linear relationships between Mn and monomer conversions were observed in all three enzyme concentrations, suggesting that the product molecular weight may be controlled by the stoichiometry of the reactants for these systems. At the same monomer conversion level, however, Mn decreased with increasing enzyme concentration. After correcting for the amount of monomer consumed in initiation, the plot of ln[([M]o - [M]i)/([Mt] - [M]i)] versus reaction time was found to be linear, suggesting that the monomer consumption followed a first-order rate law and no chain termination occurred. For the TMC systems, the polymerization was carried out in bulk at 55 degrees C. Similar to the epsilon-CL systems, increasing the Novozym 435 concentration from 8.3 to 23.6 mg/mmol TMC increased the rate of monomer conversion. Unlike the epsilon-CL systems, however, nonlinear relationships were obtained between Mn and monomer conversion, indicating that possible chain transfer and/or slow initiation had taken place in these systems. Consistent with the above result, nonlinear behavior was observed for the plot of ln[[M]o/[M]t] versus reaction time.  相似文献   

8.
Bisphenol A (BPA) and propranolol‐imprinted polymers have been prepared via both reversible addition–fragmentation chain transfer “bulk” polymerization (RAFTBP) and traditional radical “bulk” polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
An aliphatic polythioester was enzymatically prepared by the direct polycondensation of mercaptoalkanoic acid using immobilized lipase of Candida antarctica (lipase CA) in bulk. The commercially available 11-mercaptoundecanoic acid was polymerized by lipase CA in bulk in the presence of molecular sieves 4A as a water absorbent at 110 degrees C for 48 h to produce poly(11-mercaptoundecanoate) with an M(w) of 34 000 in high yield. The 104.5 degrees C melting temperature (T(m)) of poly(11-mercaptoundecanoate) was about 20 degrees C higher than that of the corresponding polyoxyester, poly(11-hydroxyundecanoate). The polythioester was readily transformed by lipase into the corresponding cyclic oligomers mainly consisting of the dimer, which were readily repolymerized by the ring-opening polymerization using lipase as a sustainable chemical recycling.  相似文献   

10.
Cai Q  Zhao Y  Bei J  Xi F  Wang S 《Biomacromolecules》2003,4(3):828-834
Star-shaped polylactide was synthesized by bulk polymerization of lactide with poly(amidoamine) (PAMAM) dendrimer as initiator, which was marked as PAMAM-g-PLA for simplicity. The nonlinear architecture of PAMAM-g-PLA was confirmed by gel permeation chromatograph, nuclear magnetic resonance, and differential scanning calorimetry analysis. Unlike the linear polylactide (PLA) with similar molecular weight, PAMAM-g-PLA had a higher hydrophilicity and a faster degradation rate because of shortened polymer chains and increased polar terminal endgroups due to its branch structure. The highly branched structure significantly accelerated the release of water-soluble bovine serum albumin from PAMAM-g-PLA microspheres, whereas the linear PLA with similar molecular weight exhibited an initial time lag release. This star polymer may have potential applications for hydrophilic drug delivery in tissue engineering, including growth factor and antibodies to induce tissue regeneration, by adjusting the chain lengths of PLA branches.  相似文献   

11.
Wu R  Al-Azemi TF  Bisht KS 《Biomacromolecules》2008,9(10):2921-2928
Enantiomerically pure functional polycarbonate was synthesized from a novel seven-membered cyclic carbonate monomer derived from naturally occurring L-tartaric acid. The monomer was synthesized in three steps and screened for polymerization with four commercially available lipases from different sources at 80 degrees C, in bulk. The ring-opening polymerization (ROP) was affected by the source of the enzyme; the highest number-average molecular weight, M(n) = 15500 g/mol (PDI = 1.7; [alpha]D(20) = +77.8, T(m) = 58.8 degrees C) optically active polycarbonate was obtained with lipase Novozyme-435. The relationship between monomer conversion, reaction time, molecular weight, and molecular weight distribution were investigated for Novozyme-435 catalyzed ROP. Deprotection of the ketal groups was achieved with minimal polymer chain cleavage (M(n) = 10000 g/mol, PDI = 2.0) and resulted in optically pure polycarbonate ([alpha]D(20) = +56) bearing hydroxy functional groups. Deprotected poly(ITC) shows T(m) of 60.2 degrees C and DeltaH(f) = 69.56 J/g and similar to that of the poly(ITC), a glass transition temperature was not found. The availability of the pendant hydroxyl group is expected to enhance the biodegradability of the polymer and serves in a variety of potential biomedical applications such as polymeric drug delivery systems.  相似文献   

12.
The 2,2'-azodiisobutyronitrile-induced radical polymerization in solution of 4-nitrophenyl acrylate was performed under microwave heating at a frequency of 2.45 GHz. This approach allows the control of the molecular mass of poly(4-nitrophenyl acrylate) used in the synthesis of multivalent glycoconjugates. It was found that the polymerization of 4-nitrophenyl acrylate under microwave irradiation results in products with a narrower molecular mass distribution than at conventional heating.  相似文献   

13.
The 2,2"-azodiisobutyronitrile-induced radical polymerization in solution of 4-nitrophenyl acrylate was performed under microwave heating at a frequency of 2.45 GHz. This approach allows the control of the molecular weight of poly(4-nitrophenyl acrylate) used in the synthesis of multivalent glycoconjugates. It was found that the polymerization of 4-nitrophenyl acrylate under microwave irradiation results in products with a narrower molecular mass distribution than at conventional heating.  相似文献   

14.
The use of molecularly imprinted polymers (MIPs) in chemical and bioanalytical applications has been gaining in interest in recent years. Compared to their biological receptor counterparts, MIPs are easy to prepare, have long shelf stability and can be used under a variety of harsh conditions. The majority of MIPs currently used are produced by traditional free radical polymerization. One drawback with the use of standard free radical initiators is that little control can be exerted over the chemical processes that form the final imprinted cavities. In this study we set out to investigate the application of controlled (living) free radical polymerization to the preparation of MIPs. This was exemplified by the synthesis of cholesterol-imprinted bulk polymers by nitroxide-mediated polymerization (NMP). A sacrificial covalent bond was employed to maintain imprinting fidelity at elevated temperature. Selective uptake of cholesterol from solutions in hexane was studied with imprinted polymers prepared under different conditions. The imprinted hydrolyzed MIP prepared by NMP displayed higher selective cholesterol binding than that prepared by a traditional radical polymerization.  相似文献   

15.
Tropomyosin inhibition of the rate of spontaneous polymerization of actin is associated with binding of tropomyosin to actin filaments. Rate constants determined by using a direct electron microscopic assay of elongation showed that alpha alpha- and alpha beta-tropomyosin have a small or no effect on the rate of elongation at either end of the filaments. The most likely explanation for the inhibition of the rate of polymerization of actin in bulk samples is that tropomyosin reduces the number of filament ends by mechanical stabilization of the filaments.  相似文献   

16.
Kamino K  Nakano M  Kanai S 《The FEBS journal》2012,279(10):1750-1760
Barnacles are a unique sessile crustacean that attach irreversibly and firmly to foreign underwater surfaces. Its biological underwater adhesive is a peculiar extracellular multi-protein complex. Here we characterize one of the two major proteins, a 52 kDa protein found in the barnacle cement complex. Cloning of the cDNA revealed that the protein has no homolog in the nonredundant database. The primary structure consists of four long sequence repeats. The process of dissolving the protein at the adhesive joint of the animal by various treatments was monitored in order to obtain insight into the molecular mechanism involved in curing of the adhesive bulk. Treatments with protein denaturant, reducing agents and/or chemical-specific proteolysis in combination with 2D diagonal PAGE indicated no involvement of the protein in intermolecular cross-linkage/polymerization, including formation of intermolecular disulfide bonds. As solubilization of the proteins required high concentrations of denaturing agents, it appears that both the conformation of the protein as building blocks and non-covalent molecular interactions between the building blocks, possibly hydrophobic interactions and hydrogen bonds, are crucial for curing of the cement. It was also suggested that the protein contributes to surface coupling by an anchoring effect to micro- to nanoscopic roughness of surfaces.  相似文献   

17.
Stroma-free hemoglobin (Hb) has been modified by pyridoxylation and followed by polymerization with glutaraldehyde as a blood substitute. Nevertheless, the reaction rate of pyridoxylated Hb (PLP-Hb) with glutaraldehyde is too fast to control its molecular weight distribution. Additionally, it was reported that glutaraldehyde is cytotoxic even at low doses. To overcome these problems, another aldehyde, beta-hydroxypropionaldehyde (beta-HPA), was used in the study to polymerize hemoglobin (PLP-Hb). beta-HPA is a natural compound (reuterin) produced by Lactobacillus reuteri. It was found that the maximum degree of PLP-Hb polymerization by reuterin (RR-PLP-Hb) was approximately 40% if the formation of high molecular (> 500 kDa) polymers should be prevented. In contrast, at the same reaction condition, the glutaraldehyde-polymerized PLP-Hb solution became gel-like, due to overpolymerization. This indicated that the rate of PLP-Hb polymerization by reuterin was significantly slower than that by glutaraldehyde. With increasing the reaction temperature, PLP-Hb concentration, or reuterin-to-PLP-Hb molar ratio, the time to reach the maximum degree of PLP-Hb polymerization by reuterin became significantly shorter. Removal of unpolymerized PLP-Hb from the RR-PLP-Hb solution can be effectively achieved by a gel-filtration column. The P(50) value of the unmodified Hb solution was 14 torr, while that of the RR-PLP-Hb solution was 20 torr, an indication of lower oxygen affinity. Additionally, the oxygen-Hb dissociation curves for both test solutions had a sigmodial shape and a nearly 100% saturation at 100 torr. In the in vivo study, it was found that the animals treated with the RR-PLP-Hb solution all survived and remained healthy more than 3 months. In contrast, only one out of six rats survived for the control group treated with the unmodified Hb solution. Furthermore, it was found that the RR-PLP-Hb solution resulted in a significantly longer circulation time ( approximately 12 h) than the unmodified Hb solution ( approximately 1.5 h). These results suggest that the reuterin-polymerized PLP-Hb solution may be a new option in the development of blood substitutes.  相似文献   

18.
The enantioselective polymerization of methyl-substituted epsilon-caprolactones using Novozym 435 as the catalyst was investigated. All substituted monomers could be polymerized except 6-methyl-epsilon-caprolactone (6-MeCL), which failed to propagate after ring opening. Interestingly, an odd-even effect in the enantiopreference of differently substituted monomers was observed. The combination of 4-methyl-epsilon-caprolactone with Novozym 435 showed good enantioselectivity also in bulk polymerization and resulted in enantiomerically enriched P((S)-4-MeCL) (eep up to 0.88). Subsequently, a novel initiator combining a primary alcohol to initiate the ring opening polymerization and a tertiary bromide to initiate atom transfer controlled radical polymerization (ATRP) was synthesized, and showed high initiator efficiencies (> 90%) in the ring opening polymerization of 4-methyl-epsilon-caprolactone in bulk. In addition, the enantioselectivity was retained (E = 11). By using Ni(PPh3)2Br2 as the ATRP catalyst, Novozym 435 could be effectively inhibited at the desired conversion of 4-methyl-epsilon-caprolactone, thus ensuring a high enantiomeric excess in the polymer backbone. At the same time, Ni(PPh3)2Br2 catalyzed the ATRP of methyl methacrylate resulting in the formation of P((S)-4-MeCL-b-MMA) block copolymers. By this combination of two inherently different polymerization reactions, chiral P((S)-4-MeCL-b-MMA) block copolymers can be conveniently obtained in one pot without intermediate workup.  相似文献   

19.
Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.  相似文献   

20.
Nanostructured amphiphilic block copolymers, graft copolymers, polymeric thermally responsive molecular brushes and polymer stars are only few examples of macromolecular architectures accessible either via controlled/living radical polymerization (CLRP) techniques or the combination of CLRP mechanisms with efficient post-polymerization routes including click chemistry. Precise control over the composition, molecular weight and functionalities is a prerequisite for soft polymeric materials to self-organize into ordered morphologies. This contribution describes novel orthogonal chemical routes for the synthesis of macromolecular architectures and self-assembly of functional soft polymeric materials. Emerging potential applications of well-defined block and graft copolymers are outlined as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号