首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study extends the observations on the defects in pseudopod formation of ABP-120+ and ABP-120- cells by a detailed morphological and biochemical analysis of the actin based cytoskeleton. Both ABP-120+ and ABP-120- cells polymerize the same amount of F-actin in response to stimulation with cAMP. However, unlike ABP-120+ cells, ABP-120- cells do not incorporate actin into the Triton X-100-insoluble cytoskeleton at 30-50 s, the time when ABP-120 is incorporated into the cytoskeleton and when pseudopods are extended after cAMP stimulation in wild-type cells. By confocal and electron microscopy, pseudopods extended by ABP- 120- cells are not as large or thick as those produced by ABP-120+ cells and in the electron microscope, an altered filament network is found in pseudopods of ABP-120- cells when compared to pseudopods of ABP-120+ cells. The actin filaments found in areas of pseudopods in ABP- 120+ cells either before or after stimulation were long, straight, and arranged into space filling orthogonal networks. Protrusions of ABP-120- cells are less three-dimensional, denser, and filled with multiple foci of aggregated filaments consistent with collapse of the filament network due to the absence of ABP-120-mediated cross-linking activity. The different organization of actin filaments may account for the diminished size of protrusions observed in living and fixed ABP-120- cells compared to ABP-120+ cells and is consistent with the role of ABP- 120 in regulating pseudopod extension through its cross-linking of actin filaments.  相似文献   

2.
Triton-insoluble cytoskeletons were isolated from Dictyostelium discoideum AX3 cells prior to and following stimulation with 2'deoxy cyclic adenosine monophosphate (cAMP). Temporal changes in the content of actin and a 120,000 dalton actin-binding protein (ABP-120) in cytoskeletons following stimulation were monitored. Both actin and ABP-120 were incorporated into the cytoskeleton at 30-40 seconds following stimulation, which is cotemporal with the onset of pseudopod extension during stimulation of amoebae with chemoattractants. Changes in the content of total cytoskeletal protein and cytoskeletal myosin were determined under the same experimental conditions as controls. These proteins exhibited different kinetics from those of cytoskeletal ABP-120 and actin following the addition of 2'deoxy cAMP. The authors concluded that the association of ABP-120 with the cytoskeleton is regulated during cAMP signalling. Furthermore, these results indicate that ABP-120 is involved in cross-linking newly assembled actin filaments into the cytoskeleton during chemoattractant-stimulated pseudopod extension.  相似文献   

3.
The actin binding protein ABP-120 has been proposed to cross-link actin filaments in nascent pseudopods, in a step required for normal pseudopod extension in motile Dictyostelium amoebae. To test this hypothesis, cell lines that lack ABP-120 were created independently either by chemical mutagenesis or homologous recombination. Different phenotypes were reported in these two studies. The chemical mutant shows only a subtle defect in actin cross-linking, while the homologous recombinant mutants show profound defects in actin cross-linking, cytoskeletal structure, pseudopod number and size, cell motility and chemotaxis and, as shown here, phagocytosis. To resolve the controversy as to what the ABP-120- phenotype is, ABP-120 was re-expressed in an ABP-120- cell line created by homologous recombination. Two independently "rescued" cell lines that express wild-type levels of ABP-120 were analyzed. In both rescued cell lines, actin incorporation into the cytoskeleton, pseudopod formation, cell morphology, instantaneous velocity, phagocytosis, and chemotaxis were restored to wild-type levels. There is no alteration in the expression levels of several related actin binding proteins in either the original ABP-120- cell line or in the rescued cell lines, leading to the conclusion that neither the aberrant phenotype observed in ABP-120- cells nor the normal phenotype reasserted in rescued cells can be attributed to alterations in the levels of other abundant and related actin binding proteins. Re-expression of ABP-120 in ABP-120- cells reestablishes normal structural and behavioral parameters, demonstrating that the severity and properties of the structural and behavioral defects of ABP-120- cell lines produced by homologous recombination are the direct result of the absence of ABP-120.  相似文献   

4.
ABP-50 is the elongation factor-1 alpha (EF-1 alpha) of Dictyostelium discoideum (Yang et al.: Nature 347:494-496, 1990). ABP-50 is also an actin filament binding and bundling protein (Demma et al.: J. Biol. Chem. 265:2286-2291, 1990). In the present study we have investigated the compartmentalization of ABP-50 in both resting and stimulated cells. Immunofluorescence microscopy shows that in addition to being colocalized with F-actin in surface extensions in unstimulated cells, ABP-50 exhibits a diffuse distribution throughout the cytosol. Upon addition of cAMP, a chemoattractant, ABP-50 becomes localized in the filopodia that are extended as a response to stimulation. Quantification of ABP-50 in Triton-insoluble and -soluble fractions of resting cells indicates that 10% of the total ABP-50 is recovered in the Triton cytoskeleton, while the remainder is in the soluble cytosolic fraction. Stimulation with cAMP increases the incorporation of ABP-50 into the Triton cytoskeleton. The peak of incorporation of ABP-50 at 90 sec is concomitant with filopod extension. Immunoprecipitation of the cytosolic ABP-50 from unstimulated cells using affinity-purified polyclonal anti ABP-50 results in the coprecipitation of non-filamentous actin with ABP-50. Purified ABP-50 binds to G-actin with a Kd of approximately 0.09 microM. The interaction between ABP-50 and G-actin is inhibited by GTP but not by GDP, while the bundling of F-actin by ABP-50 is unaffected by guanine nucleotides. We conclude that a significant amount of ABP-50 is bound to either G- or F-actin in vivo and that the interaction between ABP-50 and F-actin in the cytoskeleton is regulated by chemotactic stimulation.  相似文献   

5.
Aggregation-competent amoeboid cells of Dictyostelium discoideum are chemotactic toward cAMP. Video microscopy and scanning electron microscopy were used to quantitate changes in cell morphology and locomotion during uniform upshifts in the concentration of cAMP. These studies demonstrate that morphological and motile responses to cAMP are sufficiently synchronous within a cell population to allow relevant biochemical analyses to be performed on large numbers of cells. Changes in cell behavior were correlated with F-actin content by using an NBD-phallacidin binding assay. These studies demonstrate that actin polymerization occurs in two stages in response to stimulation of cells with extracellular cAMP and involves the addition of monomers to the cytochalasin D-sensitive (barbed) ends of actin filaments. The second stage of actin assembly, which peaks at 60 sec following an upshift in cAMP concentration, is temporally correlated with the growth of new pseudopods. The F-actin assembled by 60 sec is localized in these new pseudopods. These results indicate that actin polymerization may constitute one of the driving forces for pseudopod extension in amoeboid cells and that nucleation sites regulating polymerization are under the control of chemotaxis receptors.  相似文献   

6.
Actin polymerization and pseudopod extension during amoeboid chemotaxis   总被引:13,自引:0,他引:13  
Amoebae of the cellular slime mold Dictyostelium discoideum are an excellent model system for the study of amoeboid chemotaxis. These cells can be studied as a homogeneous population whose response to chemotactic stimulation is sufficiently synchronous to permit the correlation of the changes in cell shape and biochemical events during chemotaxis. Having demonstrated this synchrony of response, we show that actin polymerization occurs in two stages during stimulation with chemoattractants. The assembly of F-actin that peaks between 40 and 60 sec after the onset of stimulation is temporally correlated with the growth of new pseudopods. F-actin, which is assembled by 60 sec after stimulation begins, is localized in the new pseudopods that are extended at this time. Both stages of actin polymerization during chemotactic stimulation involve polymerization at the barbed ends of actin filaments based on the cytochalasin sensitivity of this response. We present a hypothesis in which actin polymerization is one of the major driving forces for pseudopod extension during chemotaxis. The predictions of this model, that localized regulation of actin nucleation activity and actin filament cross-linking must occur, are discussed in the context of current models for signal transduction and of recent information regarding the types of actin-binding proteins that are present in the cell cortex.  相似文献   

7.
Cytoimmunofluorescent localization of severin in Dictyostelium amoebae   总被引:3,自引:0,他引:3  
Severin is a 40-kDa Ca2+-activated protein from Dictyostelium that rapidly fragments and disassembles actin filaments in vitro (S.S. Brown, K. Yamamoto, and J.A. Spudich, J. Cell Biol. 93, 205-210, 1982; and K. Yamamoto, J.D. Pardee, J. Reidler, L. Stryer, and J.A. Spudich. J. Cell Biol. 95, 711-719, 1982). To determine if severin is colocalized with actin filaments in vivo, we have used the agar-overlay technique of S. Yumura, H. Mori, and Y. Fukui (J. Cell Biol. 99, 894-899, 1984) to examine the intracellular locations of severin and F-actin in vegetative Dictyostelium amoebae. In rounded cells taken from suspension culture severin colocalized with F-actin at cortical edges while maintaining an endoplasmic presence. Both severin and F-actin were present throughout nascent pseudopods of motile cells, while severin appeared concentrated at the leading edge of fully developed pseudopods. Amoebae feeding on a bacterial lawn formed large phagocytic vesicles that were surrounded by an extensive cell cortex rich in severin. Streaming cells entering aggregates during the Dictyostelium developmental cycle showed severin staining throughout the cytoplasm with F-actin at the cortex. The preferential localization of severin in cytoplasmic regions of vegetative cells undergoing extensive actin cytoskeletal rearrangement prompts consideration of a role for severin-mediated disruption of actin filament networks during pseudopod extension and phagocytosis.  相似文献   

8.
To narrow the field of possible functions of an actin-binding protein (ABP-120) and myosin II, we have used high resolution immunocytochemistry with IgG-colloidal gold conjugates to identify the types of actin containing structures with which these proteins are associated in the isolated cell cortex. Staining for myosin II and ABP-120 is associated with distinct regions of the actin cytoskeleton in isolated cortices. Myosin II is localized to lateral arrays of filaments, where it is clustered and has a density that is unrelated to distance from the plasma membrane. Staining for myosin II is associated also with unidentified cytoplasmic vesicles. However, staining for ABP-120 is concentrated in dense networks of branched microfilaments that are adjacent to the plasma membrane or in surface projections (residual pseudopods and lamellopods). These results are consistent with a role for ABP-120 in the formation of filament networks in vivo and further suggest that networks of branched microfilaments are unlikely to participate in motility that is mediated by myosin II.  相似文献   

9.
We identify a new pathway that is required for proper pseudopod formation. We show that Roco2, a leucine-rich repeat kinase 2 (LRRK2)-related Roco kinase, is activated in response to chemoattractant stimulation and helps mediate cell polarization and chemotaxis by regulating cortical F-actin polymerization and pseudopod extension in a pathway that requires Rab1A. We found that Roco2 binds the small GTPase Rab1A as well as the F-actin cross-linking protein filamin (actin-binding protein 120, abp120) in vivo. We show that active Rab1A (Rab1A-GTP) is required for and regulates Roco2 kinase activity in vivo and that filamin lies downstream from Roco2 and controls pseudopod extension during chemotaxis and random cell motility. Therefore our study uncovered a new signaling pathway that involves Rab1A and controls the actin cytoskeleton and pseudopod extension, and thereby, cell polarity and motility. These findings also may have implications in the regulation of other Roco kinases, including possibly LRRK2, in metazoans.  相似文献   

10.
We have determined diffusion coefficients for small (50- to 70-nm diameter) fluorescein-thiocarbamoyl-labeled Ficoll tracers through F-actin as a function of filament length and cross-linking. fx45 was used to regulate filament length and avidin/biotinylated actin or ABP-280 was used to prepare cross-linked actin gels. We found that tracer diffusion was generally independent of filament length in agreement with theoretical predictions for diffusion through solutions of rods. However, in some experiments diffusion was slower through short (< or = 1.0 micron) filaments, although this result was not consistently reproducible. Measured diffusion coefficients through unregulated F-actin and filaments of lengths > 1.0 micron were more rapid than predicted by theory for tracer diffusion through rigid, random networks, which was consistent with some degree of actin bundling. Avidin-induced cross-linking of biotinylated F-actin did not affect diffusion through unregulated F-actin, but in cases where diffusion was slower through short filaments this cross-linking method resulted in enhanced tracer diffusion rates indistinguishable from unregulated F-actin. This finding, in conjunction with increased turbidity of 1.0-micron filaments upon avidin cross-linking, indicated that this cross-linking method induces F-actin bundling. By contrast, ABP-280 cross-linking retarded diffusion through unregulated F-actin and decreased turbidity. Tracer diffusion under these conditions was well approximated by the diffusion theory. Both cross-linking procedures resulted in gel formation as determined by falling ball viscometry. These results demonstrate that network microscopic geometry is dependent on the cross-linking method, although both methods markedly increase F-actin macroscopic viscosity.  相似文献   

11.
In this work we evaluate the cortical expansion model for amoeboid chemotaxis with regard to new information about molecular events in the cytoskeleton following chemotactic stimulation of Dictyostelium amoebae. A rapid upshift in the concentration of chemoattractant can be used to synchronize the motile behavior of a large population of cells. This synchrony presents an opportunity to study the biochemical basis of morphological changes such as pseudopod extension that are required for amoeboid chemotaxis. Changes in the composition and activity of the cytoskeleton following stimulation can be measured with precision and correlated with important morphological changes. Such studies demonstrate that activation of actin nucleation is one of the first and most crucial events in the actin cytoskeleton following stimulation. This activation is followed by incorporation of specific actin cross-linking proteins into the cytoskeleton, which are implicated in the extension of pseudopods and filopods. These results, as well as those from studies with mutants deficient in myosin, indicate that cortical expansion, driven by focal actin polymerization, cross-linking and gel osmotic swelling, is an important force for pseudopod extension. It is concluded that whereas three forces, frontal sliding, tail contraction, and cortical expansion may cooperate to produce amoeboid movement, the cortical expansion model offers the simplest explanation of how focal stimulation with a chemoattractant causes polarized pseudopod extension.  相似文献   

12.
Nematode sperm extend pseudopods and pull themselves over substrates. They lack an axoneme or the actin and myosins of other types of motile cells, but their pseudopods contain abundant major sperm protein (MSP), a family of 14-kD polypeptides found exclusively in male gametes. Using high voltage electron microscopy, a unique cytoskeleton was discovered in the pseudopod of in vitro-activated, crawling sperm of the pig intestinal nematode Ascaris suum. It consists of 5-10-nm fuzzy fibers organized into 150-250-nm-thick fiber complexes, which connect to each of the moving pseudopodial membrane projections, villipodia, which in turn make contact with the substrate. Individual fibers in a complex splay out radially from its axis in all directions. The centripetal ends intercalate with fibers from other complexes or terminate in a thickened layer just beneath the pseudopod membrane. Monoclonal antibodies directed against MSP heavily label the fiber complexes as well as individual pseudopodial filaments throughout their length. This represents the first evidence that MSP may be the major filament protein in the Ascaris sperm cytoskeleton. The large fiber complexes can be seen clearly in the pseudopods of live, crawling sperm by computer-enhanced video, differential-interference contrast microscopy, forming with the villipodia at the leading edge of the sperm pseudopod. Even before the pseudopod attaches, the entire cytoskeleton and villipodia move continuously rearwards in unison toward the cell body. During crawling, complexes and villipodia in the pseudopod recede at the same speed as the spermatozoon moves forward, both disappearing at the pseudopod-cell body junction. Sections at this region of high membrane turnover reveal a band of densely packed smooth vesicles with round and tubular profiles, some of which are associated with the pseudopod plasma membrane. The exceptional anatomy, biochemistry, and phenomenology of Ascaris sperm locomotion permit direct study of the involvement of the cytoskeleton in amoeboid motility.  相似文献   

13.
Actin-binding proteins are known to regulate in vitro the assembly of actin into supramolecular structures, but evidence for their activities in living nonmuscle cells is scarce. Amebae of Dictyostelium discoideum are nonmuscle cells in which mutants defective in several actin-binding proteins have been described. Here we characterize a mutant deficient in the 120-kD gelation factor, one of the most abundant F-actin cross-linking proteins of D. discoideum cells. No F-actin cross-linking activity attributable to the 120-kD protein was detected in mutant cell extracts, and antibodies recognizing different epitopes on the polypeptide showed the entire protein was lacking. Under the conditions used, elimination of the gelation factor did not substantially alter growth, shape, motility, or chemotactic orientation of the cells towards a cAMP source. Aggregates of the mutant developed into fruiting bodies consisting of normally differentiated spores and stalk cells. In cytoskeleton preparations a dense network of actin filaments as typical of the cell cortex, and bundles as they extend along the axis of filopods, were recognized. A significant alteration found was an enhanced accumulation of actin in cytoskeletons of the mutant when cells were stimulated with cyclic AMP. Our results indicate that control of cell shape and motility does not require the fine-tuned interactions of all proteins that have been identified as actin-binding proteins by in vitro assays.  相似文献   

14.
Directional budding of human immunodeficiency virus from monocytes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells.  相似文献   

15.
The mechanism of chemotaxis is one of the most interesting issues in modern cell biology. Recent work shows that shallow chemoattractant gradients do not induce the generation of pseudopods, as has been predicted in many models. This poses the question of how else cells can steer towards chemoattractants. Here we use a new computational algorithm to analyze the extension of pseudopods by Dictyostelium cells. We show that a shallow gradient of cAMP induces a small bias in the direction of pseudopod extension, without significantly affecting parameters such as pseudopod frequency or size. Persistent movement, caused by alternating left/right splitting of existing pseudopodia, amplifies the effects of this bias by up to 5-fold. Known players in chemotactic pathways play contrasting parts in this mechanism; PLA2 and cGMP signal to the cytoskeleton to regulate the splitting process, while PI 3-kinase and soluble guanylyl cyclase mediate the directional bias. The coordinated regulation of pseudopod generation, orientation and persistence by multiple signaling pathways allows eukaryotic cells to detect extremely shallow gradients.  相似文献   

16.
Neutrophils are subjected to mechanical stimulation as they deform into the narrow capillary segments of the pulmonary microcirculation. The present study seeks to understand the changes in the cytoskeletal structure and the extent of biological activation as a result of this process. Neutrophils were passed through narrow polycarbonate filter pores under physiological driving pressures, fixed, and stained downstream to visualize the F-actin content and distribution. Below a threshold capillary size, the cell remodeled its cytoskeleton through initial F-actin depolymerization, followed by recovery and increase in F-actin content associated with formation of pseudopods. This rapid depolymerization and subsequent recovery of F-actin was consistent with our previous observation of an immediate reduction in moduli with eventual recovery when the cells were subjected to deformation. Results also show that neutrophils must be retained in their elongated shape for an extended period of time for pseudopod formation, suggesting that a combination of low driving pressures and small capillary diameters promotes cellular activation. These observations show that mechanical deformation of neutrophils into narrow pulmonary capillaries have the ability to influence cytoskeletal structure, the degree of cellular activation, and migrational tendencies of the cells.  相似文献   

17.
Evidence that a 27-residue sequence is the actin-binding site of ABP-120   总被引:12,自引:0,他引:12  
Proteolysis experiments of ABP-120 from Dictyostelium discoideum have previously demonstrated that removal of residues 89-115 from a tryptic peptide which retains actin binding activity, abolishes actin binding (Bresnick, A. R., Warren, V., and Condeelis, J. (1990) J. Biol. Chem. 265, 9236-9240). Antibodies made against a synthetic peptide of this 27-amino acid sequence (27-mer) specifically immunoprecipitate native ABP-120 from Dictyostelium high speed supernatants, demonstrating that the 27-mer sequence is on the surface of the molecule as expected for an active site. ABP-120 is inhibited in its binding to F-actin by Fab' fragments of the anti-27-mer IgG. Half-maximal inhibition occurs at an approximate molar ratio of 7 Fab' fragments/ABP-120 monomer. Viscoelastic measurements indicate that ABP-120 forms fewer cross-links with F-actin in the presence of the 27-mer synthetic peptide than in its absence. In F-actin cosedimentation assays, the binding of ABP-120 to actin is inhibited by the 27-mer synthetic peptide. Furthermore, the 27-mer synthetic peptide cosediments with F-actin, whereas a control hydrophobic peptide and a synthetic peptide of residues 69-88 of ABP-120 do not cosediment with F-actin. These observations suggest a direct involvement of the 27-mer sequence in the actin binding activity of ABP-120.  相似文献   

18.
Many amoeboid cells move by extending pseudopods. Here I present a new stochastic model for chemotaxis that is based on pseudopod extensions by Dictyostelium cells. In the absence of external cues, pseudopod extension is highly ordered with two types of pseudopods: de novo formation of a pseudopod at the cell body in random directions, and alternating right/left splitting of an existing pseudopod that leads to a persistent zig-zag trajectory. We measured the directional probabilities of the extension of splitting and de novo pseudopods in chemoattractant gradients with different steepness. Very shallow cAMP gradients can bias the direction of splitting pseudopods, but the bias is not perfect. Orientation of de novo pseudopods require much steeper cAMP gradients and can be more precise. These measured probabilities of pseudopod directions were used to obtain an analytical model for chemotaxis of cell populations. Measured chemotaxis of wild-type cells and mutants with specific defects in these stochastic pseudopod properties are similar to predictions of the model. These results show that combining splitting and de novo pseudopods is a very effective way for cells to obtain very high sensitivity to stable gradient and still be responsive to changes in the direction of the gradient.  相似文献   

19.
Several actin-binding proteins participate in the morphological changes that occur during amoeboid movement. The gene encoding one of these proteins, the gelation factor ABP-120, was identified and characterized from trophozoites of Entamoeba histolytica . The sequence contains 2574 nucleotides, with an open reading frame of 858 amino acids, giving a protein of 93 kDa belonging to the spectrin family. The N-terminal domain of ABP-120 from E. histolytica revealed a consensus site for actin binding homologous to the actin-binding sites of ABP-120 of Dictyostelium discoideum , α-actinin and spectrin. Analysis of the central domain revealed the presence of four repeats of a 73-amino-acid motif constituting 31% of the protein. In addition, a stretch of 105 amino acids was highly divergent when compared with the C-terminal domain of D. discoideum ABP-120. This sequence showed short motifs that are homologous to microtubule-binding domains. We found that ABP-120 from E. histolytica binds to F-actin. In addition, upon motility of the parasite, this protein localized in the pseudopod and the uroid region, implying a role for ABP-120 in movement and capping of surface receptors in E. histolytica .  相似文献   

20.
Cell polarity and Dictyostelium development   总被引:2,自引:0,他引:2  
Cell polarity is essential for unicellular and multicellular stages of Dictyostelium development. Chemotaxis during early development requires each cell to rapidly reorganize its cytoskeleton to point towards a source of cAMP. This involves a balance between local induction of F-actin polymerization and suppression of pseudopods that point in other directions. Both the lipid phosphatidylinositol (3,4,5) trisphosphate and the soluble signal cGMP have been implicated in these processes, in addition to conserved and novel proteins. During later development cells adopt newly discovered, alternative modes of movement and interact through adhesion molecules. Finally, cells polarize secretion to particular regions of their surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号