首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20-30 kdalton range. The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60-80 kdalton region and in increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

2.
Sigrid M. Klein  Leo P. Vernon 《BBA》1977,459(3):364-375
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20–30 kdalton range.The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60–80 kdalton region and an increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

3.
The polypeptide composition of spinach chloroplast membranes and membrane fractions has been examined by the technique of sodium dodecylsulfate-polyacrylamide gel electrophoresis. Chloroplasts were fragmented into grana (Photosystem II enriched) and stroma lamellae (Photosystem I in character) by the French press technique. The grana lamellae were futher fractionated by the use of digitonin into two fractions, one enriched in Photosystem II and the other enriched in Photosystem I. These membranes are composed of at least 15 polypeptides two of which, with approximate weights of 39 and 50 kdaltons, are observed only in granal fractions. Quantitatively the primarily Photosystem II fractions are enriched in polypeptides in the 30-23 kdalton range whereas the Photosystem I (or Photosystem I-enriched) fractions are enriched in polypeptides in the 60-54 kdalton region. The experiments reported show that contamination by soluble proteins or other membranes is negligible. The results indicate that subtle differences in composition account for the large differences in structure and function within the chloroplast membrane system.  相似文献   

4.
Microsomal fractions, glyoxysomes and mitochondria were isolated from homogenates of germinating castor-bean (Ricinus communis) endosperm by sucrose-density-gradient centrifugation. Washed membrane preparations from these cellular fractions were examined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. At corresponding developmental stages the endoplasmic-reticulum and glyoxysomal membranes were strikingly similar in polypeptide composition, at least 16 polypeptides being present in membranes isolated from 3-day-old tissue. Supplying [35S]methionine to intact endosperm tissue resulted in the labelling of all membrane polypeptides, the specific radioactivity in the endoplasmic reticulum being greater than for equivalent polypeptides of the glyoxysomal membrane. Washing these membranes with sodium deoxycholate solution extensively solubilized protein components, with the exception of a predominant polypeptide of mol.wt. 55000. Mitochondrial membrane preparations differed from those of the endoplasmic reticulum and glyoxysomes in polypeptide molecular-weight distribution and the [35S]methionine-labelling pattern. The similarity in polypeptide composition between endoplasmic-reticulum and glyoxysomal membranes is discussed in relation to glyoxysome biogenesis.  相似文献   

5.
Golgi-rich fractions were prepared from homogenates of adult rat pancreas by discontinuous gradient centrifugation. These fractions were characterized by stacks of cisternae associated with large, irregular vesicles and were relatively free of rough microsomes, mitochondria, and zymogen granules. The Golgi-rich fractions contained 50% of the UDP-galactose: glycoprotein galactosyltransferase activity; the specific activity was 12-fold greater than the homogenate. Such fractions represented < 19% of thiamine pyrophosphatase, uridine diphosphatase, adenosine diphosphatase, and Mg2+-adenosine triphosphatase. Zymogen granules and the Golgi-rich fractions were extracted with 0.2 m NaHCO3, pH 8.2, and the membranes were isolated by centrifugation. The glycoprotein galactosyltransferase could not be detected in granule membranes, while the specific activity in Golgi membranes was 25-fold greater than the homogenate.At least 35 polypeptide species were detected in Golgi membranes by polyacrylamide gel electrophoresis in 1% sodium dodecylsulfate. These ranged in molecular weight from 12,000 to <160,000. There were only minor differences between Golgi membranes and smooth microsomal membrane. In contrast, zymogen granule membranes contained fewer polypeptides. A major polypeptide, which represented 30–40% of the granule membrane profile, accounted for less than 3% of the polypeptides of Golgi membranes or smooth microsomal membranes.  相似文献   

6.
After solubilization of polyhedra of Autographa californica, Lymantria dispar, and Mamestra brassicae nuclear polyhedrosis viruses, PAGE showed at least eight distinct polyhedral polypeptide bands. Whereas the molecular weights of the major polypeptide were similar for the three NPVs (28.0–30.0 kdalton), characteristic differences between the species were found for the minor polypeptides having molecular weights in the range from 12.4 to 62.0 kdalton. It is assumed that these polypeptides are not generated by polyhedral alkaline protease since they are detected after protease inactivation. The data demonstrate that different baculoviruses can be distinguished from each other by SDS-PAGE of their polyhedral polypeptides.  相似文献   

7.
Fractions enriched in coated vesicles were obtained from protoplasts derived from suspension cultured Glycine max (L.) Merr. cells. Initial enrichment was achieved by isopycnic centrifugation of a protoplast homogenate through a linear sucrose gradient in a vertical rotor. The coated-vesicle fractions from this gradient were pooled and centrifuged through a second linear sucrose gradient in a rate zonal fashion to remove the larger contaminating membrane vesicles. The most prominent polypeptide in the coated-vesicle fractions, plant clathrin, had a relative molecular mass of approx. 190 kdalton as determined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Other enriched polypeptides included bands at 105, 100, 96, 64, 50, 38 and 32 kdalton. This method was compared with a procedure utilizing sucrose step gradients for preparing coated vesicles from soybean protoplasts. The effectiveness of the isopycnic-rate zonal centrifugation procedure was also tested for the preparation of bovine-brain coated vesicles.NRCC No. 23142  相似文献   

8.
1. Soluble proteins were recovered from male Schistosoma mansoni after homogenization in Tris-HCl buffer containing 0.6 M KCl and 1.0% Triton X-100 followed by preparative electrophoresis on SDS-gel. 2. Polyclonal antibodies produced in mice against the soluble fraction were used in comparative analysis of S. mansoni and S. japonicum using immunoblots and immunoprecipitation of in vitro translated polypeptides. 3. Small molecular weight polypeptide (20-22 kdalton), identified by infected mouse serum (IMS) on immunoblots, was predominant in females and was not cross-reactive with heterologous IMS. 4. A 41-43 kdalton polypeptide which appeared as a doublet on immunoblots performed with polyclonal antiserum 4M, was predominant in males of both species although the polypeptides of S. mansoni showed slower electrophoretic mobility, and therefore the larger size (43 kdalton), than that of S. japonicum. 5. Comparison of fluorograms of the immunoprecipitates of in vitro translated polypeptides indicated that IMS of S. mansoni precipitated two, 30 and 94 kdalton, polypeptides while the IMS of S. japonicum identified at 72 kdalton polypeptide. Antisera 1M, 2M and 4M also showed similarities and differences in polypeptides of in vitro translation products of the two species of Schistosoma.  相似文献   

9.
Highly purified, intact and functional mitochondria were isolated from roots and leaves of a number of fertile and male-sterile lines of sugar beet ( Beta vulgaris L.). Intact and functional mitochondria were successfully isolated from the flowers of fertile plants, but not from the flowers of male-sterile plants. Several alternative methods for the homogenization of male-sterile flowers were tried. Their failure suggests that the mitochondria from male-sterile flowers are more sensitive to mechanical damage than mitochondria from fertile, or other organs of male-sterile, plants.
In organello protein synthesis was optimized with respect to the total concentration of amino acids, the concentration of [35S]-methionine, pH and respiratory substrate. Inhibitor experiments showed that the mitochondrial preparations contained mitochondrial translational activity only. With the exception of one band, no processing or proteolytic breakdown in either root or leaf mitochondrial protein synthesis products could be detected in pulse-chase experiments. Submitochondrial fractionation experiments showed the presence of two soluble polypeptides, whereas all other polypeptides were membrane bound.
The polypeptide patterns of root, leaf and flower mitochondria were very similar with the exception of 4 polypeptides involved in glycine oxidation. These 4 polypeptides were present in large amounts in leaf mitochondria and just detectable in flower mitochondria. The patterns of polypeptides syntesized in mitochondria isolated from roots, leaves and flowers also showed a number of organ-specific differences. Six qualitative and 6 quantitative differences were found between mitochondria isolated from these three organs. No unique polypeptides were found to be synthesized either by flower mitochondria or by mitochondria from roots and leaves of male-sterile plants compared to their male-fertile counterparts.  相似文献   

10.
Chlorophyf l-free preparations of plasma membranes from leaves of barley (Hordeum vulgare L. cv. Kristina) and spinach (Spinada oleracea L. cv. Viking II) were obtained by partition in an aqueous dextran-polyethylene glycol two-phase system. CJlu-can synthetase II (EC 2.4,1.34), a marker for the plasma membrane, was highly enriched in both preparations. Silicotungstic acid, a specific stain for the plasma membrane, indicated a purity close to 100% for the barley preparation. Both plasma membrane preparations contained a light-reducible b-cytochrome, as shown by low temperature spectroscopy. The plasma membranes had a tow protein content compared to the bulk of intracellular membranes. The polypeptide composition of the barley and spinach plasma membranes showed striking similarities, with.the most prominent polypeptides in the 49-58 kdalton region, and some further prominent bands in the 30 kcialton region. Some high molecular weight polypeptides in the 73-110 kdalton region were also typical for the plasma membranes compared to the microsomal fractions.  相似文献   

11.
Fractions enriched in secretory vesicles were obtained from lactating bovine mammary tissue by a straightforward procedure involving gentle homogenization and centrifugation in isotonic milk salt solution containing Ficoll. Secretory vesicle-rich fractions could also be obtained from lactating rat mammary gland by this procedure. With rats, yields of vesicles were substantially increased by administration of colchicine or thioglucose to animals several hours before sacrifice. Isolated fractions were enriched in lactose and consisted predominantly of 0.2–1.2 μm diameter vesicles, many of which contained casein micelles. Enzymatic, compositional and morphological examination revealed vesicle preparations to be largely free of contamination by rough endoplasmic reticulum, mitochondria, nuclei, peroxisomes and lysosomes. Specific activity of several marker enzymes of the secretory vesicle fraction were similar to, or intermediate between, Golgi apparatus and milk lipid globule membranes. Amounts of cholesterol and gangliosides in vesicle fractions approached levels found in plasma membranes. In distribution of major phospholipids, secretory vesicles were intermediate between Golgi apparatus and milk lipid globule membranes. The pattern of polypeptides of secretory vesicle membrane was qualitatively similar to that of Golgi apparatus membranes. While there were similarities between these polypeptide patterns and that of lipid globule membranes, the latter contained relatively more of certain polypeptides, particularly the internal coat-associated polypeptides of the globule membrane. These observations are discussed in relation to the endomembrane hypothesis and the origin of the membrane of milk lipid globules.  相似文献   

12.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to examine the polypeptide patterns of rat liver rough and smooth endoplasmic reticulum (ER) membrane fractions stripped of ribosomes. Approximately 67 polypeptides were resolved from the rough ER membrane fraction. The polypeptide pattern of the smooth ER membrane fraction was similar to that of the rough ER membrane fraction, but exhibited substantially lower amounts of some seven polypeptides. Three of these polypeptides, of apparent molecular weights 63,000, 65,000, and 87,000, were of particular interest, as they could not be ascribed to contamination of stripped rough ER membrane fractions by residual ribosomal polypeptides. Conditions of treatment with low concentrations of trypsin were established that markedly diminished the capacity of the stripped rough ER membrane fraction to bind ribosomes in vitro and that also effected a partial detachment of ribosomes from nonstripped rough ER membranes; the results of electrophoretic analyses of rough ER membrane fractions treated in these manners are described. Comparison of the polypeptide patterns of guinea pig, mouse, and rabbit liver ER membrane fractions with rat liver ER membrane fractions revealed considerable variations in the distribution of the polypeptides of 63,000, 65,000, and 87,000 molecular weight among the ER membrane fractions of these species. The combined results of these studies indicate that the polypeptide of 87,000 molecular weight, although particularly sensitive to attack by trypsin, is not involved in the binding of ribosomes to the rough ER membrane fraction. Studies by others (cf. Kreibich, G., Grebenau, R., Mok, W., Pereyra, B., Rodriguez-Boulan, E., and Sabatini, D. D. (1977) Fed. Proc. 36, 656) have implicated the polypeptides of 63,000 and 65,000 molecular weight in this process. The patterns of phosphorylated polypeptides of rough and smooth ER membrane fractions of rat and mouse liver were also examined, using labeling in vivo with sodium [32p]phosphate or in vitro with [gamma-32P]ATP. Approximately 25 phosphorylated components were resolved by electrophoresis in the ER membrane fractions of both species. Evidence is presented that suggests that the great majority of these components are phosphopolypeptides. Differences were noted in the patterns of phosphorylation produced by in vivo and in vitro labeling; minor differences were also observed between the patterns of phosphorylation of the rough and smooth ER membrane fractions in either situation. The overall results afford an indirect approach toward evaluating the possible involvement of specific rough ER membrane polypeptides in ribosome-binding and reveal that liver ER membranes contain a substantially greater number of phosphorylated polypeptides thatn previously reported.  相似文献   

13.
The photosynthetic membranes of Anacystis nidulans R2 were examined electrophoretically following solubilization with lithium dodecyl sulfate. Electrophoresis yielded six prominent chlorophyll-containing bands. In addition, five polypeptides were observed which possessed heme-dependent peroxidase activity, monitored by incubating gels with 3,3′,5,5′-tetramethylbenzidine plus hydrogen peroxide. One such polypeptide, at 105 kdaltons, was removed by repeated washing of the membranes. Four remaining peroxidase-active polypeptides were observed at 7.2, 13.5, 18.5 and 33 kdaltons. Further examination of these four polypeptides yielded the following results. (1) The mobility of the 33 kdalton polypeptide was altered from 29 to 33 kdaltons upon heating (70°C) during membrane solubilization. (2) All four polypeptides showed stable heme-protein associations in the presence of 8 M urea; however, in the presence of urea, alterations in protein mobility were observed for each poly-peptide and only two (at 13.5 and 33 kdaltons) showed peroxidase activity following heating (70°C) during membrane solubilization. (3) The presence of thiols during membrane solubilization at 0°C was required to observe peroxidase activity at 7.2 kdaltons. These results, when compared to known properties of isolated cytochromes, suggest that the four polypeptides characterized here correspond to the subunits of photosynthetic cytochromes. Electrophoretic assessment of maize mutants lacking cytochrome f and b6 activity supports this suggestion.  相似文献   

14.
Plasma membrane and bile canalicular membrane fractions were prepared from rat liver using NaHCO3, NaHCO3--CaCl2, and K2HPO4-KH2PO4 buffers (all at pH 7.4). The amount (expressed as milligrams protein per gram liver) of plasma membrane fraction exceeded the amount of bile canalicular membrane fraction using each of these three media; the use of NaHCO3-CaCl2 afforded a substantially higher yield of both types of membranes. The two membrane fractions exhibited complex patterns of polypeptides (greater than 30) on sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis. Several reproducible differences in polypeptide patterns were observable between the two membrane fractions; in particular, components possibly corresponding to the heavy chain of myosin and to action were prominent in the bile canalicular membrane fraction. The effects of incubation in the above three buffers and in Tris--HCl (pH 7.4) on the polypeptide patterns of both types of membrane were studied. Many polypeptides were released from each type of membrane in all of these media. Differential effects on the polypeptide patterns of either type of membrane fraction were observed among the various buffers. In terms of minimizing loss of polypeptides, in general, NaHCO3--CacCl2 appeared to be the best buffer and Tris--HCl the worst buffer. The significance of these results for the preparation and storage of liver cell plasma membrane fractions is briefly discussed.  相似文献   

15.
A vessel was constructed for growth of photosynthetic bacteria at defined light intensity, temperature and partial pressure of oxygen.Under growth conditions at light intensities larger than 1,000 lx, the particles exposed by freeze-fracturing of thylakoids are unordered.Under growth conditions at light intensities lower than 30 lx, the particles seen are hexagonally arranged. If the oxygen partial pressure is increased from 0 to 30 mm Hg while keeping the light intensity at 30 lx, the particles seen in the thylakoids are found to be unregularly arranged.The protein pattern of thylakoids isolated from bacteria grown either at 2,000 lx or at 30 lx revealed a constant ratio of reaction centre polypeptide to either of the membrane polypeptides of 8 kdalton apparent Mr and 12 kdalton apparent Mr.Dedicated to Prof. Dr. G. Drews on occasion of his 60th birthday  相似文献   

16.
Sato S  Asahi T 《Plant physiology》1975,56(6):816-820
An attempt to isolate intact mitochondria from dry pea seeds (Pisum sativum var. Alaska) ended in failure. Cytochrome oxidase in crude mitochondrial fraction from dry seeds was separated into three fractions by sucrose density gradient centrifugation. Two of the fractions contained malate dehydrogenase, whereas the other did not. Equilibrium centrifugation of mitochondrial membrane on sucrose gradients revealed that the membrane from the fraction without malate dehydrogenase was lighter than that from the others. Differences were observed in relative content of phospholipid to protein and in polypeptide composition analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis among the membranes from three fractions and imbibed cotyledons. Membrane from the fraction without malate dehydrogenase was rich in phospholipid and lacking in polypeptides with relatively high molecular weights as compared with that from others. During imbibition, the fraction without malate dehydrogenase and one of the other two disappeared rapidly after a lag phase lasting for at least 1 hour. Concomitantly, active and stable mitochondria increased in the cotyledons. The results were interpreted to indicate that there were at least three types of mitochondria in dry seeds, the membranes of which differed in their biochemical properties, and that the mitochondria became active and stable through assembly of protein into the membranes during imbibition.  相似文献   

17.
Using antibodies raised against E37, one of the major polypeptides of the inner membrane from the chloroplast envelope, it has been demonstrated that a single immunologically related polypeptide was present in total protein extracts from various higher plants (monocots and dicots), in photosynthetic and non-photosynthetic tissues from young spinach plantlets, as well as in the cytoplasmic membrane from the cyanobacteria Synechococcus . This ubiquitous distribution of E37 strongly suggests that this protein plays an envelope-specific function common to all types of plastids. Comparison of tobacco and spinach E37 amino acid sequences deduced from the corresponding cDNA demonstrates that consensus motifs for S-adenosyl methionine-dependent methyltransferases are located in both sequences. This hypothesis was confirmed using a biochemical approach. It was demonstrated that E37, together with two minor spinach chloroplast envelope polypeptides of 32 and 39 kDa, can be specifically photolabeled with [3H]-S-adenosyl methionine upon UV-irradiation. Identification of E37 as a photolabeled polypeptide was established by immunoprecipitation. Furthermore, photolabeling of the three envelope polypeptides was specifically inhibited by very low concentration of S-adenosyl homocysteine, thus providing evidence for the presence within these proteins of S-adenosyl methionine- and S-adenosyl homocysteine-binding sites that were closely associated. Taken as a whole these results strongly suggest that E37 is an ubiquitous plastid envelope protein that probably has an S-adenosyl methionine-dependent methyltransferase activity. The 32 and 39 kDa envelope polypeptides probably have a similar methyltransferase activity.  相似文献   

18.
Cell fractions enriched in endoplasmic reticulum, tonoplast, plasma membrane, and cell walls were isolated from roots of barley (Hordeum vulgare L. cv CM 72) and the effect of NaCl on polypeptide levels was examined by two-dimensional (2D) polyacrylamide gel electrophoresis. The distribution of membranes on continuous sucrose gradients was not significantly affected by growing seedlings in the presence of NaCl; step gradients were used to isolate comparable membrane fractions from roots of control and salt-grown plants. The membrane and cell wall fractions each had distinctive polypeptide patterns on 2D gels. Silver-stained gels showed that salt stress caused increases or decreases in a number of polypeptides, but no unique polypeptides were induced by salt. The most striking change was an increase in protease resistant polypeptides with isoelectric points of 6.3 and 6.5 and molecular mass of 26 and 27 kilodaltons in the endoplasmic reticulum and tonoplast fractions. Fluorographs of 2D gels of the tonoplast, plasma membrane, and cell wall fractions isolated from roots of intact plants labeled with [35S]methionine in vivo also showed that salt induced changes in the synthesis of a number of polypeptides. There was no obvious candidate for an integral membrane polypeptide that might correspond to a salt-induced sodium-proton anti-porter in the tonoplast membrane.  相似文献   

19.
A 36-kDa polypeptide of unknown function was identified by us in the boundary membrane fraction of cucumber seedling glyoxysomes. Evidence is presented in this study that this 36-kDa polypeptide is a glyoxysomal membrane porin. A sequence of 24 amino acid residues derived from a CNBr-cleaved fragment of the 36-kDa polypeptide revealed 72% to 95% identities with sequences in mitochondrial or non-green plastid porins of several different plant species. Immunological evidence indicated that the 36-kDa (and possibly a 34-kDa polypeptide) was a porin(s). Antiserum raised against a potato tuber mitochondrial porin recognized on immunoblots 34-kDa and 36-kDa polypeptides in detergent-solubilized membrane fractions of cucumber seedling glyoxysomes and mitochondria, and in similar glyoxysomal fractions of cotton, castor bean, and sunflower seedlings. The 36-kDa polypeptide seems to be a constitutive component because it was detected also in membrane protein fractions derived from cucumber leaf-type peroxisomes. Compelling evidence that one or both of these polypeptides were authentic glyoxysomal membrane porins was obtained from electron microscopic immunogold analyses. Antiporin IgGs recognized antigen(s) in outer membranes of glyoxysomes and mitochondria. Taken together, the data indicate that membranes of cucumber (and other oilseed) glyoxysomes, leaf-type peroxisomes, and mitochondria possess similar molecular mass porin polypeptide(s) (34 and 36 kDa) with overlapping immunological and amino acid sequence similarities.  相似文献   

20.
Desmosomes isolated from bovine tongue mucosa or muzzle epidermis appeared identical by ultrastructural analyses but had some differences in their polypeptide compositions as determined by SDS-PAGE. These preparations were extracted in 9 M urea, 10 mM Tris-HCl (pH 9), and 25 mM B-mercaptoethanol and then centrifuged at 240,000g for 30 min. The urea-soluble and insoluble fractions were analyzed by SDS-PAGE. The urea soluble fractions of both tongue and muzzle desmosomes were enriched in polypeptides of 240, 210, 81, and 75 kDa and also polypeptides (40 to 70 kDa) that were keratin-like, as determined by immunoblotting analyses with keratin antisera. The urea insoluble fraction of tongue desmosomes contained glycoproteins of 165, 160, 140, 110, and 100 kDa, while this fraction from muzzle contained glycoproteins of 165, 115, and 105 kDa. Ultrastructural examinations of insoluble pellets obtained from urea extracted tongue and muzzle desmosomes showed that most of the components at the cytoplasmic faces of the desmosomes were removed, while the membrane regions of the desmosomes resisted the treatment. The urea soluble proteins were dialyzed against 10 mM Tris-HCl (pH 7.6), and the resulting preparation was pelleted by centrifugation and examined by electron microscopy. Ultrastructural examination of this material revealed that it had assembled into a fibrillar meshwork, similar to the fibrillar region adjacent to the submembranous plaque of isolated desmosomes. Thus, treatment of isolated desmosomes with 9 M urea allowed the fractionation of membrane-associated desmosomal proteins from cytoplasmic desmosomal proteins. A comparison of these fractions from tongue and muzzle indicated that the polypeptide compositions of the desmosomes varied between tissues, especially with respect to the fractions enriched in either glycoproteins or keratin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号