首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes.  相似文献   

2.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), has been widely investigated in terms of its pharmacological action, but less is known about its effects on cell membranes and particularly on those of human erythrocytes. In the present work, the structural effects on the human erythrocyte membrane and molecular models have been investigated and reported. This report presents the following evidence that diclofenac interacts with red cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that diclofenac interacted with a class of lipids found in the outer moiety of the erythrocyte membrane; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the acyl chains of the membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes it was observed that the drug induced changes different from the normal biconcave morphology of most red blood cells. This is the first time in which structural effects of diclofenac on the human erythrocyte membrane have been described.  相似文献   

3.
The interaction of the local anesthetic benzocaine with the human erythrocyte membrane and molecular models is described. The latter consisted of isolated unsealed human erythrocyte membranes (IUM), large unilamellar vesicles (LUV) of dimyristoylphospatidylcholine (DMPC), and phospholipid multilayers of DMPC and dimyristoylphospatidyletanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that benzocaine induced the formation of echinocytes. Experiments performed on IUM and DMPC LUV by fluorescence spectroscopy showed that benzocaine interacted with the phospholipid bilayer polar groups and hydrophobic acyl chains. X-ray diffraction analysis of DMPC confirmed these results and showed that benzocaine had no effects on DMPE. The effect on sodium transport was also studied using the isolated toad skin. Electrophysiological measurements indicated a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of benzocaine, reflecting inhibition of active ion transport.  相似文献   

4.
The effects of O33 and O49 P. mirabilis lipopolysaccharides (LPSs) on human erythrocyte membrane properties were examined. Physical parameters of the plasma membrane, such as membrane lipid fluidity, physical state of membrane proteins, and osmotic fragility, were determined. The fluidity of the lipids was estimated using three spin-labeled stearic acids of doxyl derivatives: 5-doxylstearic acid, 12-doxylstearic acid, and 16-doxylstearic acid. All the applied labels locate to different depths of the lipid layer and provide information on the ordering of phospholipid fatty acyl chain mobility. LPSs O49 increased the membrane lipid fluidity in the polar region of the lipid bilayer as indicated by spin-labeled 5-doxylstearic acid. An increase in fluidity was also observed in the deeper region using 12-doxylstearic acid only for O33 LPSs. The highest concentration of O33 LPSs (1 mg/ml) increased the motion of membrane proteins detected by the spin-label residue of iodoacetamide. These results showed different actions of O33 and O49 LPSs on the plasma membrane due to the different chemical structures of O-polysaccharides. P. mirabilis O33 and O49 LPSs did not induce changes in the membrane cytoskeleton, osmotic fragility and lipid peroxidation of erythrocytes. On the other hand a rise in the content of carbonyl compounds was observed for the highest concentrations of O33 LPS. This result indicated protein oxidation in the erythrocyte membrane. Lipid A, the hydrophobic part of LPS, did not change the membrane lipid fluidity and osmotic fragility of erythrocytes. Smooth and rough forms of P. mirabilis LPSs were tested for their abilities for complement-mediated immunohemolysis of erythrocytes. Only one out of seven LPSs used was a potent agent of complement-mediated hemolysis. It was rough, Ra-type of P. mirabilis R110 LPS. The O-polysaccharide-dependent scheme of reaction is presented.  相似文献   

5.
The effect of halothane, a typical volatile anesthetic, on the calcium- and phospholipid-dependent protein kinase (PKC), which is one of the key enzymes of membrane signal transduction, was examined. PKC was partially purified from the cerebral tissue of male Wistar rats. Halothane increased PKC-mediated phosphorylation of calf thymus H1 histone in the presence or absence of phorbol ester or diolein, and also increased phosphorylation of the rat brain cytosolic proteins (47 kDa and 80 kDa). A similar but slight increase in H1 histone phosphorylation was observed with isoflurane and enflurane, less lipid soluble volatile anesthetics. These findings suggest that halothane may increase PKC-mediated phosphorylation by the modification of phospholipid membrane and affect membrane signal transduction of the nerve cell under the anesthetic state.  相似文献   

6.
Cyclosporine A (CSA)-dipalmitoylphosphatidylcholine (DPPC) interactions were investigated using scanning calorimetry, infrared spectroscopy, and Raman spectroscopy. CSA reduced both the temperature and the maximum heat capacity of the lipid bilayer gel-to-liquid crystalline phase transition; the relationship between the shift in transition temperature and CSA concentration indicates that the peptide does not partition ideally between DPPC gel and liquid crystalline phases. This nonideality can be accounted for by excluded volume interactions between peptide molecules. CSA exhibited a similar but much more pronounced effect on the pretransition; at concentrations of 1 mol % CSA the amplitude of the pretransition was less than 20% of its value in the pure lipid. Raman spectroscopy confirmed that the effects of CSA on the phase transitions are not accompanied by major structural alterations in either the lipid headgroup or acyl chain regions at temperatures away from the phase changes. Both infrared and Raman spectroscopic results demonstrated that CSA in the lipid bilayer exists largely in a beta-turn conformation, as expected from single crystal x-ray data; the lipid phase transition does not induce structural alterations in CSA. Although the polypeptide significantly affects DPPC model membrane bilayers, CSA neither inhibited hypotonic hemolysis nor caused erythrocyte hemolysis, in contrast to many chemical agents that are believed to act through membrane-mediated pathways. Thus, agents, such as CSA, that perturb phospholipid phase transitions do not necessarily cause functional changes in cell membranes.  相似文献   

7.
Bacillus stearothermophilus, a useful model to evaluate membrane interactions of lipophilic drugs, adapts to the presence of amiodarone in the growth medium. Drug concentrations in the range of 1-2 microM depress growth and 3 microM completely suppresses growth. Adaptation to the presence of amiodarone is reflected in lipid composition changes either in the phospholipid classes or in the acyl chain moieties. Significant changes are observed at 2 microM and expressed by a decrease of phosphatidylethanolamine (relative decrease of 23.3%) and phosphatidylglycerol (17.9%) and by the increase of phosphoglycolipid (162%). The changes in phospholipid acyl chains are expressed by a decrease of straight-chain saturated fatty acids (relative decrease of 12.2%) and anteiso-acids (22%) with a parallel increase of the iso-acids (9.8%). Consequently, the ratio straight-chain/branched iso-chain fatty acids decreases from 0. 38 (control cultures) to 0.30 (cultures adapted to 2 microM amiodarone). The physical consequences of the lipid composition changes induced by the drug were studied by fluorescence polarization of diphenylhexatriene and diphenylhexatriene-propionic acid, and by differential scanning calorimetry. The thermotropic profiles of polar lipid dispersions of amiodarone-adapted cells are more similar to control cultures (without amiodarone) than those resulting from a direct interaction of the drug with lipids, i.e., when amiodarone was added directly to liposome suspensions. It is suggested that lipid composition changes promoted by amiodarone occur as adaptations to drug tolerance, providing the membrane with physico-chemical properties compatible with membrane function, counteracting the effects of the drug.  相似文献   

8.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesethetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

9.
1. The effects of a series of aliphatic alcohols (methanol to octanol) on membrane proteins of erythrocytes were studied by monitoring the flueorescence of a dye (1-anilino-8-naphthalenesulfonic acid (ANS)) that adsorbs to erythrocyte ghost membranes. Low concentrations of all the alcohols reduced the ANS fluorescence of the membrane-ANS suspensions; lent to those which protect against hypotonic hemolysis on intact erythrocytes; higher concentrations markedly increased the fluorescence. Ethanol and methanol decreased ANS fluorescence at all concentrations. 2. Lytic concentrations of saponin did not increase ANS fluorescence and did not modify the membrane action of the alcohols. 3. None of these effects were observed in liposomes prepared from lipid extracts of the erythrocyte membrane. 4. Since the apparent dissociation constant for the ANS-membrane interaction was unchanged in the presence of the alcohols, it was assumed that the fluorescence changes anesthetic concentration of the alcohols alter the conformation of membrane proteins, as indicated by the decreased number of ANS binding sites.  相似文献   

10.
Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and possesses several other interesting biological activities. This work deals with the molecular mechanism of membrane permeabilization by incorporation of surfactin. The surfactin-induced vesicle contents leakage was monitored by following release of carboxyfluorescein entrapped into unilamellar vesicles made of palmitoyloleoylphosphatidylcholine (POPC). The effect of the addition of cholesterol, dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylethanolamine (POPE) was also checked. It was observed that surfactin was able to induce content leakage at concentrations far below the onset surfactin/lipid ratio for membrane solubilization to occur, which in our system was around 0.92. Electron microscopy showed that vesicles were present after addition of surfactin at a ratio below this value, whereas no vesicles could be observed at ratios above it. Cholesterol and POPE attenuated the membrane-perturbing effect of surfactin, whereas the effect of DPPC was to promote surfactin-induced leakage, indicating that bilayer sensitivity to surfactin increases with the lipid tendency to form lamellar phases, which is in agreement with our previous observation that surfactin destabilizes the inverted-hexagonal structure. Fourier-transform infrared spectroscopy (FTIR) was used to specifically follow the effect of surfactin on different parts of the phospholipid bilayer. The effect on the C=O stretching mode of vibration of POPC indicated a strong dehydration induced by surfactin. On the other hand, the C-H stretching bands showed that the lipopeptide interacts with the phospholipid acyl chains, resulting in considerable membrane fluidization. The reported effects could be useful to explain surfactin-induced 'pore' formation underlying the antibiotic and other important biological actions of this bacterial lipopeptide.  相似文献   

11.
P Tang  B Yan    Y Xu 《Biophysical journal》1997,72(4):1676-1682
Despite their structural resemblance, a pair of cyclic halogenated compounds, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), exhibit completely different anesthetic properties. Whereas the former is a potent general anesthetic, the latter produces no anesthesia. Two linear compounds, isoflurane and 2,3-dichlorooctofluorobutane (F8), although not a structural pair, also show the same anesthetic discrepancy. Using 19F nuclear magnetic spectroscopy, we investigated the time-averaged submolecular distribution of these compounds in a vesicle suspension of phosphatidylcholine lipids. A two-site exchange model was used to interpret the observed changes in resonance frequencies as a function of the solubilization of these compounds in membrane and in water. At clinically relevant concentrations, the anesthetics F3 and isoflurane distributed preferentially to regions of the membrane that permit easy contact with water. The frequency changes of these two anesthetics can be well characterized by the two-site exchange model. In contrast, the nonanesthetics F6 and F8 solubilized deeply into the lipid core, and their frequency change significantly deviated from the prediction of the model. It is concluded that although anesthetics and nonanesthetics may show similar hydrophobicity in bulk solvents such as olive oil, their distributions in various regions in biomembranes, and hence their effective concentrations at different submolecular sites, may differ significantly.  相似文献   

12.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesthetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

13.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 microliters packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.  相似文献   

14.
Partitioning of four modern inhalational anesthetics (halothane, isoflurane, enflurane, and sevoflurane) between the gas phase and nine organic solvents that model different amino acid side-chains and lipid membrane domains was performed in an effort to define which microenvironments present in proteins and lipid bilayers might be favored. Compared to a purely aliphatic environment (hexane), the presence of an aromatic-, alcohol-, thiol- or sulfide group on the solvent improved anesthetic partitioning, by factors of 1.3-5.2 for halothane, 1.7-5.6 for isoflurane, 1.7-7.6 for enflurane, and 1.5-7.3 for sevoflurane. The most favorable solvent for halothane partitioning was ethyl methyl sulfide, a model for methionine. Enflurane and isoflurane partitioned most extensively into methanol, a model for serine, and sevoflurane into ethanol, a model for threonine. Isoflurane also partitioned favorably into ethyl methyl sulfide. The results suggest that volatile general anesthetics interact better with partly polar groups, which are present on amino acids frequently found buried in the hydrophobic core of proteins, compared to purely aliphatic side-chains. Furthermore, if an anesthetic molecule was located in a saturated region of a phospholipid bilayer membrane, there would be an energetically favorable driving force for it to move into several higher dielectric microenvironments present on membrane proteins. The results provide evidence that proteins rather than lipids are the likely targets of volatile general anesthetics in biological membranes.  相似文献   

15.
TEMPO-phosphatidylcholine (PC) spin probes which have homologous saturated acyl chains of 10, 12, 14 and 16 carbon atoms, were synthesized as analogues of PC. Transfer of TEMPO-PCs from liposomal membrane to the ghost membrane of human erythrocyte and transverse diffusion of TEMPO-PCs within the membrane of intact erythrocytes were determined by measurement of spontaneous increase and decrease in signal amplitude of an anisotropic triplet spectrum, due to dilution of the label by natural phospholipid of the membrane and reduction of the label by the cytoplasmic content of the erythrocyte, respectively. TEMPO-PC molecules in TEMPO-PC liposomes, except dipalmitoyl TEMPO-PC, were rapidly incorporated into the ghost membrane by incubation at 37 degrees C; the PC having shorter acyl chains was transferred faster. The cytoplasmic content of the erythrocyte rapidly reduced the nitroxide radical of the spin probe. The central peak height of ESR signal was once increased by incorporation of TEMPO-PC into the erythrocyte membrane and then was spontaneously decreased during further incubation at 37 degrees C. This decrease indicates that PC molecules traverse from the outer to the inner layer of the membrane lipid bilayer. The decrease of signal amplitude was faster with PC of shorter acyl chain. These findings suggest that both transfer between membranes and transverse diffusion in the membrane may be favored to the PC species with shorter acyl chains.  相似文献   

16.
K Tu  M Tarek  M L Klein    D Scharf 《Biophysical journal》1998,75(5):2123-2134
We report the results of constant temperature and pressure molecular dynamics calculations carried out on the liquid crystal (Lalpha) phase of dipalmitoylphosphatidylcholine with a mole fraction of 6.5% halothane (2-3 MAC). The present results are compared with previous simulations for pure dipalmitoylphosphatidylcholine under the same conditions (Tu et al., 1995. Biophys. J. 69:2558-2562) and with various experimental data. We have found subtle structural changes in the lipid bilayer in the presence of the anesthetic compared with the pure lipid bilayer: a small lateral expansion is accompanied by a modest contraction in the bilayer thickness. However, the overall increase in the system volume is found to be comparable to the molecular volume of the added anesthetic molecules. No significant change in the hydrocarbon chain conformations is apparent. The observed structural changes are in fair agreement with NMR data corresponding to low anesthetic concentrations. We have found that halothane exhibits no specific binding to the lipid headgroup or to the acyl chains. No evidence is obtained for preferential orientation of halothane molecules with respect to the lipid/water interface. The overall dynamics of the lipid-bound halothane molecules appears to be reminiscent of that of other small solutes (Bassolino-Klimas et al., 1995. J. Am. Chem. Soc. 117:4118-4129).  相似文献   

17.
Phenytoin (diphenylhydantoin) is an antiepileptic agent effective against all types of partial and tonic-clonic seizures. Phenytoin limits the repetitive firing of action potentials evoked by a sustained depolarization of mouse spinal cord neurons maintained in vitro. This effect is mediated by a slowing of the rate of recovery of voltage activated Na+ channels from inactivation. For this reasons it was thought of interest to study the binding affinities of phenytoin with cell membranes and their perturbing effects upon membrane structures. The effects of phenytoin on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that phenytoin interacts with cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that phenytoin perturbed a class of lipids found in the outer moiety of cell membranes; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the erythrocyte membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the insertion of phenytoin in the outer monolayer of the red cell membrane. This is the first time that an effect of phenytoin on the red cell shape is described. However, the effects of the drug were observed at concentrations higher than those currently found in plasma when phenytoin is therapeutically administered.  相似文献   

18.
The interaction of the local anesthetic procaine with human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), isolated toad skins, and molecular models is described. The latter consisted of phospholipid multilayers built-up of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that procaine induced the formation of stomatocytes. Experiments performed on IUM at 37 degrees C by fluorescence spectroscopy showed that procaine interacted with the phospholipid bilayer polar groups but not with the hydrophobic acyl chains. X-ray diffraction indicated that procaine perturbed DMPC structure to a higher extent when compared with DMPE, its polar head region being more affected. Electrophysiological measurements disclosed a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of procaine to isolated toad skin, reflecting inhibition of active ion transport.  相似文献   

19.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 μl packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.  相似文献   

20.
The interaction of phosphatidylcholine bilayers with Triton X-100   总被引:1,自引:0,他引:1  
The interaction of multilamellar phosphatidylcholine vesicles with the non-ionic detergent Triton X-100 has been studied under equilibrium conditions, specially in the sub-lytic range of surfactant concentrations. Equilibrium was achieved in less than 24 h. Estimations of detergent binding to bilayers, using [3H]Triton X-100, indicate that the amphiphile is incorporated even at very low concentrations (below its critical micellar concentration); a dramatic increase in the amount of bound Triton X-100 occurs at detergent concentrations just below those producing membrane solubilization. Solubilization occurs at phospholipid/detergent molar ratios near 0.65 irrespective of lipid concentration. The perturbation produced by the surfactant in the phospholipid bilayer has been studied by differential scanning calorimetry, NMR and Fourier-transform infrared spectroscopy. At low detergent concentration (lipid/detergent molar ratios above 3), a reduction in 2H-NMR quadrupolar splitting occurs, suggesting a decrease in the static order of the acyl chains; the same effect is detected by Fourier-transform infrared spectroscopy in the form of blue shifts of the methylene stretching vibration bands. Simultaneously, the enthalpy variation of the main phospholipid phase transition is decreased by about a third with respect to its value in the pure lipid/water system. For phospholipid/detergent molar ratios between 3 and 1, the decrease in lipid static order does not proceed any further; rather an increase in fluidity is observed, characterized by a marked decrease in the midpoint transition temperature of the gel-to-fluid phospholipid transition. At the same time an isotropic component is apparent in both 31P-NMR and 2H-NMR spectra, and a new low-temperature endotherm is detected in differential scanning calorimetric traces. When phospholipid and Triton X-100 are present at equimolar ratios some bilayer structure persists, as judged from calorimetric observations, but NMR reveals only one-component isotropic signals. At lipid/detergent molar ratios below unity, the NMR lines become narrower, the main (lamellar) calorimetric endotherm tends to vanish and solubilization occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号