首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokine signaling involves the participation of many adaptor proteins, including the docking protein TNF receptor-associated factor-2 (TRAF-2), which is believed to transmit the TNF-alpha signal through both the I kappa B/NF-kappa B and c-Jun N-terminal kinase (JNK)/stress-related protein kinase (SAPK) pathways. The physiological role of TRAF proteins in cytokine signaling in intestinal epithelial cells (IEC) is unknown. We characterized the effect of a dominant-negative TRAF-2 delivered by an adenoviral vector (Ad5dnTRAF-2) on the cytokine signaling cascade in several IEC and also investigated whether inhibiting the TRAF-2-transmitting signal blocked TNF-alpha-induced NF-kappa B and IL-8 gene expression. A high efficacy and level of Ad5dnTRAF-2 gene transfer were obtained in IEC using a multiplicity of infection of 50. Ad5dnTRAF-2 expression prevented TNF-alpha-induced, but not IL-1 beta-induced, I kappa B alpha degradation and NF-kappa B activation in NIH-3T3 and IEC-6 cells. TNF-alpha-induced JNK activation was also inhibited in Ad5dnTRAF-2-infected HT-29 cells. Induction of IL-8 gene expression by TNF-alpha was partially inhibited in Ad5dnTRAF-2-transfected HT-29, but not in control Ad5LacZ-infected, cells. Surprisingly, IL-1 beta-mediated IL-8 gene expression was also inhibited in HT-29 cells as measured by Northern blot and ELISA. We concluded that TRAF-2 is partially involved in TNF-alpha-mediated signaling through I kappa B/NF-kappa B in IEC. In addition, our data suggest that TRAF-2 is involved in IL-1 beta signaling in HT-29 cells. Manipulation of cytokine signaling pathways represents a new approach for inhibiting proinflammatory gene expression in IEC.  相似文献   

2.
3.
4.
We have investigated the characteristics of IL2R alpha gene induction in untransformed murine T cells. Induction of IL2R alpha mRNA by TCR/CD3 ligands in a murine T cell clone and in short-term splenic T cell cultures was inhibited by protein synthesis inhibitors and by CsA. This result was contrary to previous observations in JURKAT T leukemia cells and human peripheral blood T cells, suggesting a difference in the mechanisms of IL2R alpha gene induction in these different cell types. The CsA sensitivity of IL2R alpha mRNA induction represented a direct effect on the TCR/CD3 response, and was not due to CsA-sensitive release of the lymphokines IL2 or tumour necrosis factor alpha (TNF alpha) and consequent lymphokine-mediated induction of IL2R alpha mRNA. The NF-kappa B site of the IL2R alpha promoter was essential for gene induction through the TCR/CD3 complex, and the induction of reporter plasmids containing multimers of this site was significantly inhibited by CsA. Northern blotting analysis indicated that while the p65 subunit of NF-kappa B was constitutively expressed and not appreciably induced upon T cell activation, mRNA for the p105 precursor of p50 NF-kappa B was induced in response to TCR/CD3 stimulation and this induction was sensitive to CsA. Electrophoretic mobility shift assays and antiserum against the p50 subunit of NF-kappa B indicated that p50 was a component of the inducible nuclear complex that bound to the IL2R alpha kappa B site. Appearance of the kB-binding proteins was insensitive to CsA at early times after activation (approximately 15 min), but was partially sensitive to CsA at later times. Based on these results, we propose that the NF-kappa B site of the IL2R alpha promoter mediates at least part of the CsA sensitivity of IL2R alpha gene induction in untransformed T cells, possibly because de novo synthesis of p105 NF-kappa B is required for sustained IL2R alpha expression.  相似文献   

5.
6.
The relative contributions of IL-2 and IL-4 during the immune response to the retrovirus-induced tumor, FBL, were examined. Both proliferative and cytolytic responses to FBL were measured and compared to similar responses to minor histocompatibility Ag. The addition of alpha IL-2 partially inhibited FBL-stimulated proliferation of purified L3T4+ T cells and nearly completely inhibited the response of Lyt-2+ T cells, whereas alpha IL-4 partially inhibited the proliferative response of the L3T4+ subset but had no effect on the response of the Lyt-2+ subset. The addition of exogenous IL-4 augmented the proliferative response of both subsets. Therefore, IL-4 is an endogenous growth factor for FBL-induced specific proliferation of the L3T4+ and not the Lyt-2+ population, but both subpopulations can respond to IL-4. Similar examination of anti-FBL CTL responses revealed that alpha IL-2, but not alpha IL-4, inhibited FBL-specific Lyt-2+ CTL generation. However, exogenous IL-4 partially replaced the L3T4+ Th cell activity necessary for optimal Lyt-2+ FBL-specific CTL generation. Therefore, IL-4 is not required but can participate in the CTL response. The role of IL-4 during the immune response of B6 mice to minor histocompatibility Ag disparate BALB.B cells was analyzed. alpha IL-4 had no detectable effect on the proliferative or cytolytic response to BALB.B cells, suggesting that endogenous IL-4 does not have a significant role in these responses. The extent of involvement of endogenous IL-4 in the T cell responses to retrovirus-induced tumor Ag and minor histocompatibility Ag presumably reflects the nature of the stimulating Ag, and detection of an IL-4 response may correlate with induction of an antibody response. Thus, the immunizing Ag and/or host B cell repetoire may influence which subsets of L3T4+ Th cells are activated during priming in vivo.  相似文献   

7.
8.
To define the role of NF-kappa B in the development of T cell responses required for resistance to Toxoplasma gondii, mice in which T cells are transgenic for a degradation-resistant (Delta N) form of I kappa B alpha, an inhibitor of NF-kappa B, were challenged with T. gondii and their response to infection compared with control mice. I kappa B alpha(Delta N)-transgenic (Tg) mice succumbed to T. gondii infection between days 12 and 35, and death was associated with an increased parasite burden compared with wild-type (Wt) controls. Analysis of the responses of infected mice revealed that IL-12 responses were comparable between strains, but Tg mice had a marked reduction in systemic levels of IFN-gamma, the major mediator of resistance to T. gondii. In addition, the infection-induced increase in NK cell activity observed in Wt mice was absent from Tg mice and this correlated with NK cell expression of the transgene. Infection-induced activation of CD4(+) T cells was similar in Wt and Tg mice, but expansion of activated CD4(+)T cells was markedly reduced in the Tg mice. This difference in T cell numbers correlated with a reduced capacity of these cells to proliferate after stimulation and was associated with a major defect in the ability of CD4(+) T cells from infected mice to produce IFN-gamma. Together, these studies reveal that inhibition of NF-kappa B activity in T and NK cells results in defective effector cell expansion and production of IFN-gamma required for resistance to T. gondii.  相似文献   

9.
10.
11.
The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.  相似文献   

12.
13.
14.
IL-17 expression is restricted to activated T cells, whereas the IL-17R is expressed in a variety of cell types including intestinal epithelial cells. However, the functional responses of intestinal epithelial cells to stimulation with IL-17 are unknown. Moreover, the signal transduction pathways activated by the IL-17R have not been characterized. IL-17 induced NF-kappa B protein-DNA complexes consisting of p65/p50 heterodimers in the rat intestinal epithelial cell line IEC-6. The induction of NF-kappa B correlated with the induction of CXC and CC chemokine mRNA expression in IEC-6 cells. IL-17 acted in a synergistic fashion with IL-1 beta to induce the NF-kappa B site-dependent CINC promoter. Induction of the CINC promoter by IL-17 in IEC-6 cells was TNF receptor-associated factor-6 (TRAF6), but not TRAF2, dependent. Furthermore, IL-17 induction of the CINC promoter could be inhibited by kinase-negative mutants of NF-kappa B-inducing kinase and I kappa B kinase-alpha. In addition to activation of the NF-kappa B, IL-17 regulated the activities of extracellular regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in IEC-6 cells. Whereas the IL-17-mediated activation of extracellular regulated kinase mitogen-activated protein kinases was mediated through ras, c-Jun N-terminal kinase activation was dependent on functional TRAF6. These data suggest that NF-kappa B-inducing kinase serves as the common mediator in the NF-kappa B signaling cascades triggered by IL-17, TNF-alpha, and IL-1 beta in intestinal epithelial cells.  相似文献   

15.
16.
17.
Both the diversity and the precisely regulated tissue- and differentiation-specific expression patterns of keratins suggest that these proteins have specific functions in epithelia besides their well known maintenance of cell integrity. In the search for these specific functions, our previous results have demonstrated that the expression of K10, a keratin expressed in postmitotic suprabasal cells of the epidermis, prevents cell proliferation through the inhibition of Akt kinase activity. Given the roles of Akt in NF-kappa B signaling and the importance of these processes in the epidermis, a study was made into the possible alterations of the NF-kappa B pathway in transgenic mice expressing K10 in the proliferative basal layer. It was found that the inhibition of Akt, mediated by K10 expression, leads to impaired NF-kappa B activity. This appears to occur through the decreased expression of IKK beta and IKK gamma. Remarkably, increased production of tumor necrosis factor alpha and concomitant JNK activation was observed in the epidermis of these transgenic mice. These results confirm that keratin K10 functions in vivo include the control of many aspects of epithelial physiology, which affect the cells not only in a cell autonomous manner but also influence tissue homeostasis.  相似文献   

18.
NF-kappa B-inducing kinase (NIK) is involved in lymphoid organogenesis in mice through lymphotoxin-beta receptor signaling. To clarify the roles of NIK in T cell activation through TCR/CD3 and costimulation pathways, we have studied the function of T cells from aly mice, a strain with mutant NIK. NIK mutant T cells showed impaired proliferation and IL-2 production in response to anti-CD3 stimulation, and these effects were caused by impaired NF-kappa B activity in both mature and immature T cells; the impaired NF-kappa B activity in mature T cells was also associated with the failure of maintenance of activated NF-kappa B. In contrast, responses to costimulatory signals were largely retained in aly mice, suggesting that NIK is not uniquely coupled to the costimulatory pathways. When NIK mutant T cells were stimulated in the presence of a protein kinase C (PKC) inhibitor, proliferative responses were abrogated more severely than in control mice, suggesting that both NIK and PKC control T cell activation in a cooperative manner. We also demonstrated that NIK and PKC are involved in distinct NF-kappa B activation pathways downstream of TCR/CD3. These results suggest critical roles for NIK in setting the threshold for T cell activation, and partly account for the immunodeficiency in aly mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号