首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steffenach HA  Witter M  Moser MB  Moser EI 《Neuron》2005,45(2):301-313
The extensive connections of the entorhinal cortex with the hippocampus and the neocortex point to this region as a major interface in the hippocampal-neocortical interactions underlying memory. We asked whether hippocampal-dependent recall of spatial memory depends on the entorhinal cortex, and, if so, which parts are critical. After training in a Morris water maze, rats received fiber-sparing lesions in the dorsolateral band of the entorhinal cortex, which mediates much of the visuospatial input to the dorsal hippocampus. These lesions entirely disrupted retention and retarded new learning. Spatial memory was spared by lesions in the ventromedial band, which connects primarily with ventral hippocampus, but these lesions reduced defensive behavior on an elevated plus maze, mirroring the effects of damage to ventral hippocampus. The results suggest that the functional differences between dorsal and ventral hippocampus reflect their connectivity with modules of the entorhinal cortex that are differently linked to the rest of the cortex.  相似文献   

2.
Among the molecular, cellular, and systemic events that have been proposed to modulate the function of the hippocampus and the entorhinal cortex (EC), one of the most frequently cited possibilities is the activation of the serotonergic system. Neurons in the hippocampus and in the EC receive a strong serotonergic projection from the raphe nuclei and express serotonin (5-HT) receptors at high density. Here we review the various effects of 5-HT on intrinsic and synaptic properties of neurons in the hippocampus and the EC. Although similar membrane-potential changes following 5-HT application have been reported for neurons of the entorhinal cortex and the hippocampus, the effects of serotonin on synaptic transmission are contrary in both areas. Serotonin mainly depresses fast and slow inhibition of the principal output cells of the hippocampus, whereas it selectively suppresses the excitation in the entorhinal cortex. On the basis of these data, we discuss the possible role of serotonin under physiological and pathophysiological circumstances.  相似文献   

3.
4.
In various brain regions, particularly in the hippocampus, afferent fiber projections terminate in specific layers. Little is known about the molecular cues governing this laminar specificity. To this end we have recently shown that the innervation pattern of entorhinal fibers to the hippocampus is mimicked by the lamina-specific adhesion of entorhinal cells on living hippocampal slices, suggesting a role of adhesion molecules in the positioning of entorhinal fibers. Here, we have analyzed the role of extracellular matrix components in mediating this lamina-specific adhesion. We show that hyaluronidase treatment of hippocampal slices abolishes lamina-specific adhesion as well as layer-specific growth of entorhinal fibers to the dentate outer molecular layer in organotypic slice cultures. We conclude that hyaluronan-associated molecules play a crucial role in the formation of the lamina-specific entorhinal projection to the hippocampus.  相似文献   

5.
The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named lactography); in some rats, unilateral lesions of the entorhinal cortex were made or the bilateral adrenal glands were removed. The stress-evoked increase in hippocampus lactate was not altered either ipsi- or contralateral to an entorhinal cortex lesion. The response to ECS was attenuated only in the hippocampus ipsilateral to the entorhinal cortex lesion. Removal of bilateral adrenal glands caused some delay in the increase in hippocampal lactate after ECS and a major reduction in the stress-evoked lactate response. These results indicate that (1) the entorhinal cortex is activated by ECS, thereby activating hippocampal lactate efflux and presumably metabolism, and (2) the adrenal gland is essential in the response to stress and, to a minor extent, in the ECS-altered hippocampal metabolism.  相似文献   

6.
The purpose of the present study was to evaluate the possible effect of melanin-concentrating hormone (MCH) on learning and memory by using the one-trial step-down inhibitory avoidance test in rats. The peptide was infused into hippocampus, amygdala, and entorhinal cortex. MCH caused retrograde facilitation when given at 0 or 4 h post-training into hippocampus, but only at 0 h into amygdala. From these results, it seems that MCH modulates memory early after training by acting on both the amygdala and hippocampus and, 4 h after training, on the hippocampus.  相似文献   

7.
The purpose of the present study was to evaluate the possible effect of melanin-concentrating hormone (MCH) on learning and memory by using the one-trial step-down inhibitory avoidance test in rats. The peptide was infused into hippocampus, amygdala, and entorhinal cortex. MCH caused retrograde facilitation when given at 0 or 4 h post-training into hippocampus, but only at 0 h into amygdala. From these results, it seems that MCH modulates memory early after training by acting on both the amygdala and hippocampus and, 4 h after training, on the hippocampus.  相似文献   

8.
We determined the changes in the levels of the mammalian small heat shock protein of 25-28 kDa (hsp27) and the hsp alphaB-crystallin in various regions of rat brain after kainic acid-induced seizure activity by means of specific immunoassays. The levels of hsp27 in the hippocampus and entorhinal cortex were markedly increased and reached a maximum (1.5-2 microg/mg of protein) 2-4 days after the seizure. The levels of hsp27 in these regions were considerably high even 10 days after the seizure. A marked increase in levels of mRNA for hsp27 was also observed in the hippocampus of rats 1-2 days after the seizure. A severalfold increase in the levels of alphaB-crystallin was observed in the hippocampus and entorhinal cortex of rats 2 days after the seizure. However, the maximum levels were <50 ng/mg of protein. The levels of protein sulfhydryl group and glutathione were significantly reduced in the hippocampus of rats at 24 h after the seizure, which might have enhanced the expressions of hsp27 and alphaB-crystallin. The expression of inducible mammalian hsp of 70 kDa (hsp70) was also enhanced in the hippocampus of rats after the seizure, as detected by western and northern blotting analyses. Immunohistochemically, an intensive staining of hsp27 was observed in both glial cells and neurons in the hippocampus, piriform cortex, and entorhinal cortex of rats with kainic acid-induced seizure. However, in the cerebellum, where the receptors for kainic acid are also rich, hsp27 was barely induced in the same rats. This might be due to high levels of the cerebellar calcium-binding proteins parvalbumin and 28-kDa calbindin-D, which might have a protective effect against the kainic acid-inducible damage.  相似文献   

9.
The alvear pathway of the rat hippocampus   总被引:2,自引:0,他引:2  
Neurons of the entorhinal cortex project to the hippocampus proper and dentate gyrus. This projection is called the ”perforant pathway” because it perforates the subiculum; current usage applies this term to all entorhino-hippocampal fibers. However, entorhinal fibers also reach Ammon’s horn via the alveus (”alvear pathway”), an alternative route first described by Cajal. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) was used in order to analyze the contribution of this pathway to the temporo-ammonic projection. In the temporal portion of the rat hippocampus, most of the entorhinal fibers reach Ammon’s horn after perforating the subiculum (classical perforant pathway). At more septal levels, the number of entorhinal fibers that take the alvear pathway increases; in the septal portion of the hippocampal formation, most of the entorhinal fibers to hippocampal subfield CA1 reach this subfield via the alveus. These fibers make sharp right-angle turns in the alveus, perforate the pyramidal cell layer, and finally terminate in the stratum lacunosum-moleculare. The crossed temporo-ammonic fibers reach their termination area in the stratum lacunosum-moleculare of CA1 almost exclusively via the alveus. These data indicate that the alveus is a major route by which entorhinal fibers reach their targets in CA1. Received: 14 May 1996 / Accepted: 22 June 1996  相似文献   

10.
By using slice cultures as a model, we demonstrate here that different target selectivities exist among the various afferent fibers to the hippocampus. As in intact animals, septohippocampal cholinergic fibers, provided by a slice culture of septum, innervate a co-cultured slice of hippocampus diffusely, that is, without forming distinct layers of termination. As in vivo, the septal cholinergic fibers establish synapses with a variety of target cells. Conversely, fibers from an entorhinal slice co-cultured to a hippocampal slice display their normal laminar specificity. They preferentially terminate in the outer molecular layer of the fascia dentata, thereby selectively contacting peripheral dendrites of the granule cells. This preferential termination on peripheral dendritic segments is remarkable, since these fibers do not have to compete with commissural fibers, hypothalamic fibers, and septal afferents for dendritic space under these culture conditions. Moreover, in triplet cultures in which first two hippocampal slices were co-cultured and then, with a delay of 5 days, an entorhinal slice was added, the fibers from the entorhinal slice and those from the hippocampal culture terminated in their appropriate layers in the hippocampal target culture. However, in this approach the normal sequence of ingrowth of these two afferents was reversed. In normal ontogenetic development, entorhinal afferents arrive in the hippocampus before the commissural fibers. The results show that there are different degrees of target selectivity of hippocampal afferents and that the characteristic lamination of certain afferent fibers in the hippocampus is not determined by their sequential ingrowth during development. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
In this study the role of membrane-associated molecules involved in entorhinohippocampal pathfinding was examined. First outgrowth preferences of entorhinal neurites were analyzed on membrane carpets obtained from their proper target area, the hippocampus, and compared to preferences on control membranes from brain regions which do not receive afferent connections from the entorhinal cortex. On a substrate consisting of alternating lanes of hippocampal and control membranes, entorhinal neurites exhibited a strong tendency to grow on lanes of hippocampal membrane. These tissue-specific outgrowth preferences were maintained even on membrane preparations from adult brain tissue devoid of myelin. To determine the possible maturation dependence of these membranes, we examined guidance preferences of entorhinal neurites on hippocampal membranes of different developmental stages ranging from embryonic to postnatal and adult. Given a choice between alternating lanes of embryonic (E15-E16) and neonatal (P0-P1) hippocampal membranes, entorhinal neurites preferred to extend on neonatal membranes. No outgrowth preferences were observed on membranes obtained between E19 and P10. From P10 onward there was a reoccurrence of a preference for postnatal membrane lanes when neurites were presented with a choice between P15, P30, and adult membranes (>P60). This choice behavior of entorhinal neurites temporally correlates with the ingrowth of the perforant path into the hippocampus and with the stabilization of this brain area in vivo. Experiments in which postnatal and adult hippocampal membranes were heat inactivated or treated to remove molecules sensitive to phosphatidylinositol-specific phospholipase C demonstrated that entorhinal fiber preferences were controlled in this assay by attractive guidance cues and were independent of phosphatidylinositol-sensitive linked molecules. Moreover, entorhinal neurites displayed a positive discrimination for membrane-associated guidance cues of their target field, thus preferring to grow on membranes from the molecular layer of the dentate gyrus compared with CA3 or hilus membranes. Heat-inactivation experiments indicated that preferential growth of entorhinal axons is due to a specific attractivity of the molecular layer substrate. The data presented demonstrate that outgrowth of entorhinal fibers on hippocampal membranes is target and maturation dependent.  相似文献   

12.
This report examines the effects of unilateral electrolytic and knife-cut lesions of entorhinal cortex on glutamate uptake, the muscarinic receptor [3H]QNB binding and acetylcholinesterase (AChE) activity in the dorsal and ventral parts of the ipsi- and contralateral hippocampus of the rat.We found that (1) in unoperated, control rats there are no pre-existing differences in the level of the investigated markers between the right and left hippocampus, (2) both electrolytic and knife-cut lesions of the entorhinal cortex evoke bilateral changes in the investigated markers and (3) the character of the response is dependent on the survival time and on the hippocampal part involved. Four days after operation a substantial reduction in glutamate uptake was found in both the dorsal and ventral parts of the ipsi- and contralateral hippocampus. At the same time there was a drop in muscarinic receptor binding, while AChE activity was not affected. The decrease in glutamate uptake persisted on the 21st postoperative day, whereas muscarinic receptor binding was enhanced, in comparison with the control level, in the ventral part of both the ipsi- and contralateral hippocampus. This overshoot was not so evident on the 30th postoperative day; glutamate uptake at that time reached or even surpassed the control level. Enhancement of AChE activity on the ipsi- and contralateral sides was noted on both the 21st and 30th day after operation.We suggest the following interpretation of these results: (1) glutamatergic projections from the entorhinal cortex to the hippocampus are bilateral, (2) some transneuronal changes probably contribute to the decline in glutamate uptake, particularly on the contralateral side, (3) neuronal depolarization does not seem to be the only mechanism responsible for the decrease in muscarinic receptor binding and (4) some compensatory mechanisms occur in the hippocampus at a later time after the lesion.Moreover, we believe that the use of the contralateral side as a control should be considered with caution in studies with unilaterally lesioned animals.  相似文献   

13.
This study concerns effects of the testes on two macromolecules in the rat hippocampus that were previously not known to be responsive to this endocrine axis. Castration for 3 weeks elevated the expression of glial fibrillary acidic protein (GFAP) and sulfated glycoprotein-2 (SGP-2) in male rat hippocampus, as shown by Northern blots and immunocytochemistry. SGP-2 mRNA was colocalized with GFAP, implying increased prevalence in astrocytes after castration. During hippocampal responses to deafferentation by entorhinal cortex lesions that damage the perforant path and induce synaptic reorganization, both mRNA and protein for SGP-2 and GFAP increase. Moreover, prior castration had an additive effect with entorhinal cortex lesions in the increase in GFAP and SGP-2 mRNA. These data suggest that testicular hormones regulate hippocampal astrocyte activity in intact adult rats as well as during synaptic reorganization in response to deafferenting lesions.  相似文献   

14.
Yasuda M  Mayford MR 《Neuron》2006,50(2):309-318
To investigate the role of the entorhinal cortex in memory at a molecular level, we developed transgenic mice in which transgene expression was inducible and limited to the superficial layers of the medial entorhinal cortex, pre- and parasubiculum. We found that expression of a constitutively active mutant form of CaMKII in these structures disrupted spatial memory formation. Immediate post-training activation of the transgene disrupted previously established memory while transgene activation 3 weeks following the training was ineffective. These results demonstrate that, similar to the hippocampus, the entorhinal cortex plays a time-limited role in spatial memory formation but is not a final cortical repository of long-term memory. Moreover, these results suggest that the indiscriminate activation of CaMKII is able to disrupt preexisting memories, possibly by altering the pattern of synaptic weight changes that are thought to form the basis of the memory trace.  相似文献   

15.
The mammalian space circuit is known to contain several functionally specialized cell types, such as place cells in the hippocampus and grid cells, head-direction cells and border cells in the medial entorhinal cortex (MEC). The interaction between the entorhinal and hippocampal spatial representations is poorly understood, however. We have developed an optogenetic strategy to identify functionally defined cell types in the MEC that project directly to the hippocampus. By expressing channelrhodopsin-2 (ChR2) selectively in the hippocampus-projecting subset of entorhinal projection neurons, we were able to use light-evoked discharge as an instrument to determine whether specific entorhinal cell groups—such as grid cells, border cells and head-direction cells—have direct hippocampal projections. Photoinduced firing was observed at fixed minimal latencies in all functional cell categories, with grid cells as the most abundant hippocampus-projecting spatial cell type. We discuss how photoexcitation experiments can be used to distinguish the subset of hippocampus-projecting entorhinal neurons from neurons that are activated indirectly through the network. The functional breadth of entorhinal input implied by this analysis opens up the potential for rich dynamic interactions between place cells in the hippocampus and different functional cell types in the entorhinal cortex (EC).  相似文献   

16.
17.
18.
An electrophysiological study was performed in rat entorhinal cortex. The results confirmed anatomical data on its connections with olfactory structures. Unit analysis has shown that neurons respond to odours. This area thus appears as an important structure for olfactory projections, possibly relaying these informations to the hippocampus.  相似文献   

19.
Retrograde transsynaptic transport of rabies virus was employed to undertake the top-down projections from the medial temporal lobe (MTL) to visual area V4 of the occipitotemporal visual pathway in Japanese monkeys (Macaca fuscata). On day 3 after rabies injections into V4, neuronal labeling was observed prominently in the temporal lobe areas that have direct connections with V4, including area TF of the parahippocampal cortex. Furthermore, conspicuous neuron labeling appeared disynaptically in area TH of the parahippocampal cortex, and areas 35 and 36 of the perirhinal cortex. The labeled neurons were located predominantly in deep layers. On day 4 after the rabies injections, labeled neurons were found in the hippocampal formation, along with massive labeling in the parahippocampal and perirhinal cortices. In the hippocampal formation, the densest neuron labeling was seen in layer 5 of the entorhinal cortex, and a small but certain number of neurons were labeled in other regions, such as the subicular complex and CA1 and CA3 of the hippocampus proper. The present results indicate that V4 receives major input from the hippocampus proper via the entorhinal cortex, as well as “short-cut” pathways that bypass the entorhinal cortex. These multisynaptic pathways may define an anatomical basis for hippocampal-cortical interactions involving lower visual areas. The multisynaptic input from the MTL to V4 is likely to provide mnemonic information about object recognition that is accomplished through the occipitotemporal pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号