首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon Induction in Rabbit Cells Irradiated with UV Light   总被引:3,自引:0,他引:3       下载免费PDF全文
UV irradiation of a continuous line of rabbit kidney cells (RK13) was used as a tool for the study of the mechanism of interferon induction. Irradiation of cells prior to their exposure to Newcastle disease virus (NDV) resulted in a dose-dependent decrease in interferon production. The inhibition of total cellular RNA synthesis by UV irradiation in uninduced cultures was similar to the inactivation curve of interferon production in NDV-induced cultures. In contrast, the production of interferon with polyinosinate-polycytidylate (poly[I].poly [C]) paradoxically was enhanced in cells irradiated with a wide range of doses of UV. However, in cells stimulated with poly(I).poly(C) and "superinduced" by the sequential addition of cycloheximide and actinomycin D, the rate of inactivation of interferon production by UV light was similar to that observed with NDV. These results are not inconsistent with the idea that both poly(I).poly(C) and NDV stimulate the same interferon gene(s), but indicate that the mechanism controlling its expression may be different for each inducer.  相似文献   

2.
Post-Transcriptional Control of Interferon Synthesis   总被引:23,自引:3,他引:20       下载免费PDF全文
Low to moderate doses of cycloheximide had a stimulatory effect on interferon production in rabbit kidney cell cultures treated with double-stranded polyinosinate-polycytidylate (poly I:poly C). A very marked stimulation occurred in the presence of a dose of cycloheximide inhibiting amino acid incorporation into total cellular protein by about 75%. Higher doses of cycloheximide caused a shift in interferon release towards later intervals and a gradual decrease in the overall degree of stimulation. An even greater increase in the amount of interferon produced was observed if cells were treated with cycloheximide for only 3 to 4 hr immediately after their exposure to poly I:poly C. Under the latter conditions, a rapid burst of interferon production occurred after the reversal of cycloheximide action. Treatment with a high dose of actinomycin D before the reversal of cycloheximide action caused a further increase and a marked prolongation of interferon production. It is postulated that inhibitors of protein synthesis suppress the accumulation of a cellular regulatory protein (repressor) which interacts with the interferon messenger ribonucleic acid mRNA and thereby prevents its translation. Therefore, active interferon mRNA can apparently accumulate in rabbit kidney cells which, after exposure to poly I:poly C, are kept in the presence of an inhibitor of protein synthesis. Some of this accumulated interferon mRNA can be translated during a partial block of cellular protein synthesis, but its most efficient translation occurs after the reversal of the action of the protein synthesis inhibitor.  相似文献   

3.
Antiviral and interferonogenic activity of the complexes of poly(G,A) . poly(C) and poly(G) . poly(C) was studied in mice and cell cultures. Three out of 4 complexes of poly(G,A) . poly(C) had insignificant antiviral and interferonogenic activity in chick embryo cells. One of the complexes induced low levels of interferon production in mice and decreased the rate of their death from experimental forest-spring encephalitis. The activity of poly(G) . poly(C) in the above cell systems was much more pronounced. Unlike this complex, some complexes of poly(G,A) . poly(C) showed a noticeable activity in the cells of Primates. The effect of the noncomplementary base in the purine thread of poly(G) . poly(C) on its biological activity and nucleotide composition is discussed.  相似文献   

4.
A variety of diploid human fibroblast lines have been successfully grown to high densities (greater than 10(6) cell/ml) on recently developed microcarriers. Interferon induction using poly I.poly C and a superinduction procedure resulted in yields greater than 10,000 units/ml with one cell line. A direct comparison of microcarrier cultures to roller bottle cultures showed equivalent interferon yields on a per cell basis and some apparent differences relating to optimum inducer concentrations and kinetics of interferon accumulation.  相似文献   

5.
Complexes of poly(C) with copolymers of inosinic acid containing various amounts of mismatched bases (see journal for formula) have been examined for direct resistance to virus infection, interferon induction and toxicity in two different cell cultures (primary rabbit kidney cells and mouse L-929 cells). Complexes in which 20% of the hypoxanthine bases were replaced by (see journal for formula) or ms-2I were partially active whereas complexes in which 40% or more of the hypoxanthine bases were replaced by the odd bases were entirely inactive. The decrease in biological activity observed upon intrusion of (see journal for formula) or ms-2I in the poly(I) strand of poly(I) with poly(C) closely paralleled the amount of odd bases introduced irrespective of the system employed to assess the biological activity (resistance to virus infection, interferon induction or toxicity).  相似文献   

6.
The effects of double-stranded RNA (dsRNA) on interferon (IFN)-induced antiviral and anticellular activities was investigated by introducing poly(I)-poly(C) into mouse L-cells. Coprecipitation of dsRNA with calcium phosphate enabled its efficient penetration into cells in culture. Rate of cellular protein synthesis was inhibited by dsRNA only in cultures pretreated with IFN. Moreover, the anticellular effect of IFN, as measured by the inhibition of cell DNA synthesis, was also enhanced by dsRNA. The kinetics of dsRNA-mediated inhibition of protein synthesis were relatively slow as compared with the inhibitory effect of 2'-5' oligoadenylic acid (2'5'A), which was also introduced into cells by the calcium phosphate coprecipitation technique. To analyze the effects of dsRNA on the antiviral state induced by IFN, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMC), replications were followed by measuring viral-specific RNA synthesis in the cell. Introduction of dsRNA after the infection had no effect on VSV and EMC replication in control cells, and it enhanced, to a small extent, the antiviral state of cells pretreated with IFN. In contrast, introduction of 2'5'A into virus-infected cells inhibited VSV and EMC replications regardless of IFN pretreatment. This work demonstrated that the role of dsRNA in regulating the antiviral and anticellular activities of IFN could be studied by introducing exogenous dsRNA into cells in culture by the calcium phosphate coprecipitation technique.  相似文献   

7.
Mitogen-induced gamma interferon production by human lymphoid cell cultures was studied in the presence of calcium entry blockers. A dose-dependent inhibition was found in the presence of drug concentrations down to 10(-5) M. This finding shows that calcium flow through lymphocyte membranes after oxidation of membrane-bound galactose residues is also critical for triggering interferon production.  相似文献   

8.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

9.
Interferon production in cultures of rabbit kidney cells (RKC) stimulated with 10 to 250 mug of polyinosinic-polycytidylic acid (poly I.poly C) per ml peaked at 3 to 4 hr after the exposure of cells to inducer and rapidly declined thereafter. On the other hand, RKC stimulated with poly I.poly C (10 or 2 mug/ml) in the presence of diethylaminoethyl (DEAE)-dextran (100 or 20 mug/ml, respectively) produced a protracted interferon response, with the release of interferon continuing for over 24 hr. The kinetics of interferon production in RKC stimulated with lower concentrations of the mixture of poly I.poly C and DEAE-dextran were similar to the response produced by poly I.poly C alone (10 to 250 mug/ml). Only the responses that terminated early were paradoxically enhanced by treatment with low doses of actinomycin D or with cycloheximide. Cells stimulated with 50 mug of poly I.poly C/ml showed hyporesponsiveness to a second interferon induction with poly I.poly C when restimulated 7 hr after primary induction. This hyporesponsiveness could be overcome by restimulating with higher concentrations of the poly I.poly C-DEAE-dextran complex. The results are compatible with the hypothesis that the early termination of interferon production and hyporesponsiveness to repeated induction with poly I.poly C are due to a cellular repressor exerting negative control on interferon synthesis, and that the increased cellular uptake of poly I.poly C in the presence of DEAE-dextran may effectively neutralize the repressor. These results also suggested that the often observed different kinetics and the varied effects of inhibitors of ribonucleic acid or protein synthesis on interferon responses in various cells and in cells stimulated with different inducers (such as with viruses as compared with polynucleotides) need not imply the existence of fundamentally different mechanisms of interferon production.  相似文献   

10.
The synthetic double-stranded RNA polyinosinate-polycytidylate [poly(I).poly(C)] was mitogenic in cultures of human foreskin fibroblasts, as demonstrated by a stimulation of 3H-thymidine incorporation and an increase in cell density. Poly(I).poly(C) is a potent inducer of interferon (IFN)-beta in human fibroblasts. Single-stranded poly(l) or poly(C) were not mitogenic in human fibroblasts and did not stimulate IFN production. Antiserum to interferon (IFN)-beta, added to poly(I).poly(C)-stimulated cultures in order to neutralize endogenously generated IFN, markedly amplified the mitogenic action. Under similar experimental conditions, antiserum to IFN-beta did not enhance the mitogenic action of epidermal growth factor (EGF). Dexamethasone enhanced the mitogenic action of poly(I).poly(C) in a manner similar to antiserum against IFN-beta. This effect of dexamethasone correlated with its marked inhibitory action on poly(I).poly(C)-stimulated IFN production. Together with the results of other related studies, these findings support the notion of an evolutionary link between the generation of a mitogenic signal and IFN induction. In addition, these results support the concept that autocrine secretion of IFN-beta can exert negative feedback control of cell proliferation.  相似文献   

11.
The quantities of 125I-ds-inductors of interferon penetrating into the cells of transplantable cultures such as M19 (human fibroblast cells) and L-929 (mouse line) were not significant i.e. 10.5-4 per cent of the drug added. Under conditions of transfection with calcium phosphate and in complex with DEAE dextran the quantities of the inductors adhering to the cells and their contents in the cytoplasmic and nuclear fractions markedly increased. During the transfection with calcium phosphate up to 50 per cent of the applied inductor bound to the cells and its content in the cytoplasm and nuclei reached at least 10 per cent. After penetration into the cells poly I.poly C probably maintained its native structure and appeared to be firmly bound to the nuclear material. Preliminarily hydrolyzed inductors showed no such penetrating capacity. Contrary to the human fibroblast cells, in the mouse cells L-929 treated with the ds-inductors there was observed inhibition of the total protein synthesis which was probably due to activation of enzymes such as 2-5A-synthetase and proteinkinase. Increased penetration of the ds-inductors into the cells was accompanied by a marked (from 10- to 1000-fold) rise in their antiviral activity and a 2-4-fold rise in their interferon-inducing activity. It was concluded that there was immediate dependence of ds-inductor biological activity manifestation on the level of the inductor penetration into the cells.  相似文献   

12.
Double-stranded RNA can stimulate interferon production and mediate an antiproliferative effect on certain cell types. We evaluated the possibility of specifically targeting to cells in vitro the RNA duplex poly(rI).poly(rC) in pharmacologically active form after its encapsulation in small, unilamellar liposomes, to which was covalently coupled protein A. These liposomes became bound to and were endocytosed by murine L929 cells in the presence of protein A-binding monoclonal antibodies specific for an expressed cell surface protein, the H-2K molecule. When L929 cells were preincubated in the presence of low doses of interferon alpha/beta or gamma, they could be activated to produce interferon following exposure to either free poly(rI).poly(rC), or specifically bound liposomes poly(rI).poly(rC), but not the same liposomes in the presence of non-cell binding control antibodies. Specifically bound liposome-encapsulated poly(rI).poly(rC) was toxic to L929 cells at dose levels at least three logs lower than free poly(rI).poly(rC). This toxicity was also dependent on pre-treatment with interferon. These results indicate that liposome-encapsulated poly(rI).poly(rC) can survive endocytosis and can be released in active form to specific cell populations, at concentrations much lower than that required for pharmacologic effects of the same molecule in free form. They suggest that introduction into cells of other nucleic acids might benefit from the antibody-targeted liposome technology described here.  相似文献   

13.
Poly(I).poly(C) covalently coupled to a matrix by one point fixation through its 3′ terminal stimulated both antiviral activity and interferon production in primary rabbit kidney (PRK) cells. This effect could not be accounted for by free polynucleotide released from the matrix into the medium. Penetration of the polynucleotide into the cells does not appear to be necessary for interferon production. A limited amount of matrix-bound poly(I).poly(C) was associated with the cells. Since it was sensitive to extraneous ribonuclease treatment, this poly(I).poly(C) was believed to be localized at the cell surface. Preliminary findings suggest that the binding of the polynucleotide to the cell is not directly proportional to the amount of interferon induced.  相似文献   

14.
The administration of appropriate doses of interferon to cultures of Friend leukemia cells causes a pronounced inhibition of cell growth. Several lines of evidence indicate that this effect is due to interferon itself, rather than to unknown contaminants of interferon preparations. Autoradiograph analysis of growth parameters of Friend leukemia cells during treatment with interferon demonstrates that the rate of entry into the S phase, the percent decline of unlabeled mitoses, and the mitotic indexes are significantly lower in interferon- treated cell cultures than in control untreated cultures when tritiated thymidine was added 12 h after the administration of interferon. These data indicate that fractions of interferon-treated cell population are delayed in both G1 and in G2 phases of the cell cycle. This was confirmed by exact measurements of the length of the various phases of the cycle. The interferon-induced inhibition of growth of Friend leukemia cells is reversible after removal of the compound. Autoradiograph data obtained from control cultures and from cultures previously treated with interferon that had been washed free of interferon and reseeded in interferon-free medium, demonstrate that during the first 12 h after removal of interferon, a large majority of the cells previously treated with interferon had a deranged flow into the S phase, a high number of unlabeled mitoses, and a low mitotic index. These data provide further evidence for the above-mentioned prolongations of G1 and G2 phases of the cell cycle. All growth parameters tested reverted to normal values within 12 h after washing out interferon.  相似文献   

15.
A system is described for assaying mouse interferon without using a viral "challenge" agent. Interferon-treated L cells were destroyed by exposure to polyriboinosinic.polyribocytidylic acid [poly(I).poly(C)], and the amount of destruction was dependent on both the concentration of interferon to which the cells were exposed and the amount of poly(I).poly(C) used as the "challenge" material. If the amount of poly(I).poly(C) was constant, the concentration of interferon could be determined by quantitating cell destruction 6 hr after addition of the double-stranded ribonucleic acid. In addition to eliminating the necessity for employing infectious virus for interferon assays, this system has the advantages of being quicker, easier, and more sensitive than other interferon assays. The sensitivity of the assay is related directly to the amount of poly(I).poly(C) applied to the cells, with each fivefold increase of poly(I).poly(C) giving about a fivefold increase of sensitivity.  相似文献   

16.
Two lines of Friend virus (FV)-transformed mouse spleen cells have been analyzed in respect to their interferon production capacity: neither F4 cells, which liberate infectious FV when kept under tissue culture conditions, nor the thymidine kinase-deficient B8 cells, which do not produce significant amounts of FV, release detectable amounts of autogenous interferon into cell supernatants. However, interferon is produced in these cells in amounts comparable to that in L-929 cells when interferon induction is initiated with UV-inactivated Newcastle disease virus. Conversely poly(I) · poly(C), a potent interferon inducer in L-929 cells, proved ineffective in this capacity in F4 or B8 cells. When erythropoietic differentiation is induced in these cells by dimethyl sulfoxide, no autogenous interferon production occurs, but with NDV-induction a four- to fivefold increase of interferon production is observed. A similar elevation of interferon production is achieved during 5-bromodeoxyuridine stimulation of differentiation in the thymidine kinase-deficient B8 cells. The refractiveness against poly(I) · poly(C) displayed in unstimulated cells is not overcome at any stage of differentiation, indicating major differences of Newcastle disease virus and poly(I) · poly(C) induction mechanisms.  相似文献   

17.
Glucocorticoid hormones promoted the growth of fibroblast cells derived from human neonatal foreskins and prolonged their life span in a microcarrier culture system that used Eagle's minimum essential medium (MEM) supplemented with fetal calf serum (FCS). But, these hormones suppressed cell growth in conventional monolayer cultures. Precolostrum newborn calf serum (PNCS) was the only species that supported the serial propagation of fibroblast cells on microcarriers, possibly because of its high content of hydrocortisone (HC). Fibroblast cells grown on microcarriers in the presence of glucocorticoid hormones maintained their ability to produce interferon (IFN)-beta in a superinduction method with poly I: poly C and antimetabolites. These cells had more than 93% diploidy and no chromosomal aberration or translocation. Use of PNCS for the cultivation of human fibroblast cells has high potential for providing a microcarrier culture system for the mass production of human IFN-beta.  相似文献   

18.
Rabbit kidney cell cultures stimulated with either double-stranded polyinosinate-polycytidylate (poly I:poly C) or with ultraviolet-irradiated Newcastle disease virus (UV-NDV) produce two types of interferon response, designated "early" and "late," respectively. The early response is suppressed by inhibitors of RNA or protein synthesis and is therefore thought to represent de novo synthesis of interferon. Circumstantial evidence suggested that this interferon response is regulated by a translation control mechanism. Late interferon production with poly I:poly C only took place in the presence of inhibitors of RNA or protein synthesis. The late interferon is therefore likely to be derived by the activation of an interferon precursor. The stimulation of late poly I:poly C-induced interferon production by cycloheximide suggested the existence of a second, posttranslational level of control of interferon production. This posttranslation control seems to be activated by interferon. UV-NDV can probably suppress the synthesis of the posttranslation inhibitory protein, and therefore it stimulates a late interferon response in the absence of inhibitors of RNA or protein synthesis. It is postulated that both the translation and posttranslation inhibitor participate in the development of a cellular refractory state to repeated interferon stimulation. The picture of interferon which emerges from this study is one of a heterogenous class of proteins whose production is controlled by cellular repressors acting at various levels.  相似文献   

19.
Summary The inhibitory effect of interferon on colony formation of myeloma stem cells in two layer plasma clot-soft agar cultures was studied. Human lymphoblast interferon inhibited in therapeutically attainable concentrations myeloma stem cell proliferation in 50% and human fibroblast interferon in 23% of the 14 myeloma patients in whom in vitro colony formation could be achieved. In interferon-sensitive patients the numbers of myeloma stem cell clusters and colonies were decreased to 34.4%–54.9% of control cultures. In addition, maturation of myeloma stem cells in differentiated plasma cells was reduced by interferon in most of these cases.  相似文献   

20.
Nicotinamide in concentrations of 5 mM and greater protected fibroblast target cells from lysis by lymphokine-activated killer cells (LAK cells). Protection was concentration dependent and was exerted at the level of the target cell. Nicotinamide did not interfere with effector-target cell conjugate formation or with the calcium dependent triggering step of the lytic process. Target cell lysis in cultures without nicotinamide was accompanied by fragmentation of target cell DNA. The DNA of target cells cultured with LAK cells in the presence of nicotinamide remained intact. 3-Aminobenzamide which, like nicotinamide, inhibits poly(ADP-ribose) synthetase but is not a precursor of NAD, was an effective inhibitor of target cell lysis while nicotinic acid, an alternative precursor of NAD in cells, was not. The data point to a central role for poly(ADP-ribose) synthetase in the events leading up to DNA fragmentation and the release of 51Cr from target cells damaged by lymphokine-activated killer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号