首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人DNA 拓扑异构酶Ⅰ在毕赤酵母中的表达及发酵条件优化   总被引:1,自引:0,他引:1  
为了在体外以人DNA拓扑异构酶Ⅰ(hTopoⅠ)为靶位进行抗肿瘤化合物的快速筛选,用RT-PCR法从Hela细胞中克隆了hTopoⅠ基因ORF并在毕赤酵母中首次成功表达,表达产物可分泌到发酵上清,易于制备。蛋白酶A缺陷的重组酵母(SMD-hTopoⅠ)分泌重组酶的能力比具有蛋白酶A活性的重组酵母(X33-hTopoⅠ和KM-hTopoⅠ)更高。通过发酵条件的优化,使用BMMY(pH7.25),于20℃,每隔24h补加0.5%(V/V)的甲醇和3%(V/V)的营养液,SMD-hTopoⅠ诱导72h后可表达最高的酶活力(43000u/mL),发酵上清中hTopoⅠ可达11mg/L,约占总蛋白的10%。SDS-PAGE和Westem blot分析显示,表达的hTopoⅠ为91kD蛋白,无糖基化修饰。  相似文献   

2.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

3.
Benzimidazoles of both natural and synthetic sources are the key components of many bio-active compounds. Several reports have shown antifungal, antiviral, H2 receptor blocker and antitumor activities for benzimidazoles and their derivatives. In this study, we synthesized twelve bis-benzimidazole derivatives by selecting di(1H-benzo[d]imidazol-2-yl)methane as the main compound. The numbers of carbons at 2 positions of bis-benzimidazole derivatives were changed from 1 to 4, and derivatives were synthesized with methyl substitutions at 5- and/or 6- positions. The compounds were screened via in vitro plasmid superciol relaxation assays using mammalian DNA topoisomerase I and cytostatic assays were carried out against HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma) cells for selected derivatives. Our results suggest that the malonic acid derivatives of bis-benzimidazoles, namely, bis(5-methyl-1H-benzo[d]imidazol-2-yl)methane and bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)methane, were remarkably active compounds in interfering with DNA topoisomerase I and the former compound was also found to be cytotoxic against MCF7 and A431 cells. The inhibitory effects obtained with these derivatives are significant as these compounds can be potential sources of anticancer agents.  相似文献   

4.
To a great extent, the cellular compartmentalization and molecular interactions are indicative of the function of a protein. The development of simple and efficient tools for testing the subcellular location of proteins is indispensable to elucidate the function of genes in plants. In this report, we assessed the feasibility ofAgrobacterium-mediated transformation of hydroponically grown roots to follow intracellular targeting of proteins fused to green fluorescent protein (GFP). We developed a simple in planta assay for subcellular localization of proteins inArabidopsis roots via transient transformation and tested this method by expressing a GFP fusion of a known nuclear protein, IQD1. Visualization of transiently expressed GFP fusion proteins in roots by means of confocal microscopy is superior to the analysis of green tissues because the roots are virtually transparent and free of chlorophyll autofluorescence.  相似文献   

5.
利用PCR方法扩增FAM92A1-289全长,经BamH I和Xho I酶切后连接入pEGFP-N1真核表达载体,构建pEGFP-N1-FAM92A1-289重组表达质粒,转染Hela细胞,利用荧光显微镜观察FAM92A1-289在细胞中的定位。经双酶切和核酸序列分析证实重组质粒包含有正确编码的FAM92A1-289读码框。荧光显微镜观察到空质粒pEGFP-N1转染后,整个细胞内弥散绿色荧光,而转染pEGFP-N1-FAM92A1-289重组载体后,可见绿色荧光分布于Hela细胞核中,显示FAM92A1-289定位于细胞核。成功构建人FAM92A1-289真核表达载体,FAM92A1-289定位于哺乳细胞的细胞核中。  相似文献   

6.
Many viral oncogenes encode protein~yrosine kinase activities. However, importantin vivo substrates of these enzymes have yet to be identified. Recently, type I topoisomerases were shown to bein vitro substrates for two tyrosine kinases. Following tyrosine phosphorylation, topoisomerase I activity was reduced 10-fold (Tse-Dinhet al. Nature 312:785–786, 1984). To determine whether topoisomerase I activity was modulated by tyrosine phosphorylationin vivo, we have measured topoisomerase I activity in nuclear lysates prepared from both normal fibroblasts and cells transformed by two different viral oncogenes (v-abl, v-src). Under a variety of experimental conditions, we have found no evidence to support the notion that type I topoisomerase activity is modulated by tyrosine phosphorylationin vivo.  相似文献   

7.
Subnuclear localization of topoisomerase I (top I) is determined by its DNA relaxation activity and a net of its interactions with in majority unidentified nucleolar and nucleoplasmic elements. Here, we recognized SR protein SRSF1 (Serine/arginine-rich splicing factor 1, previously known as SF2/ASF) as a new element of the net. In HeLa cells, overexpression of SRSF1 recruited top I to the nucleoplasm whereas its silencing concentrated it in the nucleolus. Effect of SRSF1 was independent of top I relaxation activity and was the best pronounced for the mutant inactive in relaxation reaction. In HCT116 cells where top I was not released from the nucleolus upon halting relaxation activity, it was also not relocated by elevated level of SRSF1. Out of remaining SR proteins, SRSF5, SRSF7, and SRSF9 did not influence the localization of top I in HeLa cells whereas overexpression of SRSF2, SRSF3, SRSF6, and partly SRSF4 concentrated top I in the nucleolus, most possibly due to the reduction of the SRSF1 accessibility. Specific effect of SRSF1 was exerted because of its distinct RS domain. Silencing of SRSF1 compensated the deletion of the top I N-terminal region, individually responsible for nucleoplasmic localization of the mutant, and restored the wild-type phenotype of deletion mutant localization. SRSF1 was essential for the camptothecin-induced clearance from the nucleolus. These results suggest a possible role of SRSF1 in establishing partition of top I between the nucleolus and the nucleoplasm in some cell types with distinct combinations of SR proteins levels.  相似文献   

8.
The potential role(s) of DNA topoiosmerase II (topo II) during chromatin changes that characterize different stages of spermatogenesis was investigated in the rat by an analysis of the expression and localization of topo II mRNA and protein in individual spermatogenic cells. Expression of topo II was restricted to spermatogonia, spermatocytes, and round and early-elongating spermatids. Two protein bands of 177 and 170 kDa were detected in immunoblots of spermatocytes and round spermatids, while bands of 148 and 142 kDa were prominent in preparations of elongating spermatids. Topo II levels and distribution patterns, as observed by immunofluorescent microscopy, exhibited cell type-specific variations. Differences in topo II staining patterns were also apparent when nuclear matrices of spermatogenic cells were prepared with different extraction conditions. In addition to its possible function as a structural component, topo II, associated with nuclear matrix preparations from spermatogenic cells, possessed catalytic activity. These observations indicate that both the 177 and 170 kDa and the 148 and 142 kDa forms of topo II share similar structural and functional properties. Topo IIβ mRNA was transcribed in rat spermatogenic cells at 6.2 kb. Relative levels of topo IIβ mRNA were high in spermatogonia and spermatocytes, and decreased in both round and early-elongating spermatids. Changes in topo II expression levels and localization patterns represent distinct stage-specific markers for the maturation of spermatogenic cells, and are consistent with the involvement of topo II in mediating DNA modifications and chromatin changes during spermatogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

9.
以小麦抗逆相关蛋白TaMAPK2作为诱饵,利用酵母双杂交系统进行筛库,获得互作蛋白TaAIP。氨基酸序列分析发现TaAIP具有wali保守区,并且与一些物种的铝诱导蛋白相似。实时荧光定量PCR分析显示,TaAIP基因受到铝、干旱以及高盐胁迫上调表达。半定量RT-PCR结果表明,TaAIP在小麦茎中表达,在根部、叶片以及花中没有表达。亚细胞定位实验发现,TaAIP定位在细胞膜上。这些结果为深入分析TaAIP的抗逆性作用机理打下基础。  相似文献   

10.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

11.
The role of DNA topoisomerases in plant cell metabolism is currently under investigation in our laboratory. Using a purified type I topoisomerase from cultured tobacco, we have carried out a biochemical characterization of enzymatic behavior. The enzyme relaxes negatively supercoiled DNA in the presence of MgCl2, and to a lesser extent in the presence of KCl. Phosphorylation of the topoisomerase does not influence its activity and it is not stimulated by the presence of histones H1 or H5. The enzyme may act in either a processive or distributive manner depending on reaction conditions. The anti-tumor drug, camptothecin, induces significant breakage by the enzyme on purified DNA molecules unless destabilized by the addition of KCl. The tobacco topoisomerase I can catalyze the formation of stable nucleosomes on circular DNA templates, suggesting a role for the enzyme in chromatin assembly.  相似文献   

12.
We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex.  相似文献   

13.
Prediction of protein subcellular localization   总被引:6,自引:0,他引:6  
Yu CS  Chen YC  Lu CH  Hwang JK 《Proteins》2006,64(3):643-651
Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.  相似文献   

14.
Aberration of eukaryotic topoisomerase I catalysis leads to potentially recombinogenic pathways by allowing the joining of heterologous DNA strands. Recently, a new ligation pathway (flap ligation) was presented for vaccinia virus topoisomerase I, in which blunt end cleavage complexes ligate the recessed end of duplex acceptors having a single-stranded 3'-tail. This reaction was suggested to play an important role in the repair of topoisomerase I-induced DNA double-strand breaks. Here, we characterize flap ligation mediated by human topoisomerase I. We demonstrate that cleavage complexes containing the enzyme at a blunt end allow invasion of a 3'-acceptor tail matching the scissile strand of the donor, which facilitates ligation of the recessed 5'-hydroxyl end. However, the reaction was strictly dependent on the length of double-stranded DNA of the donor complexes, and longer stretches of base-pairing inhibited strand invasion. The stabilization of the DNA helix was most probably provided by the covalently bound enzyme itself, since deleting the N-terminal domain of human topoisomerase I stimulated flap ligation. We suggest that stabilization of the DNA duplex upon enzyme binding may play an important role during normal topoisomerase I catalysis by preventing undesired strand transfer reactions. For flap ligation to function in a repair pathway, factors other than topoisomerase I, such as helicases, would be necessary to unwind the DNA duplex and allow strand invasion.  相似文献   

15.
In this study, we used, for the first time, atomic force microscope (AFM) images to investigate the mode of action of DNA topoisomerase I (topo I) in the presence and absence of its inhibitors: camptothecin (CPT) and tyrphostin AG-1387. The results revealed that in the absence of the inhibitors, the enzyme relaxed supercoiled DNA starting from a certain point in the DNA molecules and proceeded in one direction towards one of the edges of the DNA molecule. In addition, the relaxation of the supercoiled DNA is subsequently followed by a knotting event. In the presence of CPT, enzyme-supercoiled DNA complexes in which the enzyme is locked inside a relaxed region of the supercoiled DNA molecule were observed. Tyrphostin AG-1387 altered the DNA relaxation process of topo I producing unique shapes of DNA molecules. AFM images of the topo I protein provided a picture of the enzyme, which resembles its known crystallographic structure. Thus, AFM images provide new information on the mode of action of topo I in the absence and presence of its inhibitors.  相似文献   

16.
The enzymatic studies were performed to reveal a mode of activation of human topoisomerase I by a direct interaction with protein kinase CK2. In the absence of ATP CK2 kinase activated DNA relaxation about twofold. CK2 subunit was identified as solely responsible for the stimulation of relaxing activity by CK2 kinase. CK2 activated the relaxation only at the excess of the substrate over topoisomerase I. At the equimolar ratio of the substrate DNA and topoisomerase I the activation was not observed. There was also no effect of CK2 on camptothecin-induced cleavage of DNA by htopo I. These results identify an accelerated movement of topoisomerase I between substrate molecules as a cause of the activation of DNA relaxation by CK2 kinase.  相似文献   

17.
18.
Kowalska-Loth  B.  Bubko  I.  Komorowska  B.  Szumiel  I.  Staron  K. 《Molecular biology reports》1998,25(1):21-26
An in vitro system composed of nicked pBR322 DNA and purified topoisomerase I was employed to study the efficiency of the topoisomerase I-driven single-strand to double-strand DNA breaks conversion. At 1.4 × 105 topoisomerase I activity units per mg DNA about 20% single-strand nicks were converted into double-strand breaks during 30 min due to topoisomerase I action. Camptothecin inhibited the conversion. The conversion was also inhibited when the relaxing activity of the used topoisomerase I was increased by phosphorylation of the enzyme with casein kinase 2. The presented data suggest that topoisomerase I may be involved in production of double-stranded breaks in irradiated cells and that this process positively depends on the amount of topoisomerase I but not on its phosphorylation state.  相似文献   

19.
The human topoisomerase I N-terminal domain is the only part of the enzyme still not crystallized and the function of this domain remains enigmatical. In the present study, we have addressed the specific functions of individual N-terminal regions of topoisomerase I by characterizing mutants lacking amino acid residues 1-202 or 191-206 or having tryptophane-205 substituted by glycine in a broad variety of in vitro activity assays. As a result of these investigations we find that mutants altered in the region 191-206 distinguished themselves from the wild-type enzyme by a faster strand rotation step, insensitivity towards the anti-cancer drug camptothecin in relaxation and the inability to ligate blunt end DNA fragments. The mutant lacking amino acid residues 1-202 was impaired in blunt end DNA ligation and showed wild-type sensitivity towards camptothecin in relaxation. Taken together, the presented data support a model according to which tryptophane-205 and possibly other residues located between position 191-206 coordinates the restriction of free strand rotation during the topoisomerization step of catalysis. Moreover, tryptophane-205 appears important for the function of the bulk part of the N-terminal domain in direct DNA interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号